首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient routes for the syntheses of optically pure and hitherto unknown l-chiro- and d-allo-inositol derivatives, azido- and aminocyclitols of l-chiro-configuration, diazido- and diaminocyclitols of d-allo-configuration from economically viable myo-inositol are described. These routes provide access to synthetically flexible 1,2:4,5-di-O-isopropylidene-chiro-inositol and 1,6:3,4-di-O-isopropylidene-allo-inositol, which are otherwise difficult to synthesize directly from their parent inositols. A one pot methodology that allows rapid access to both chiro- and allo-inositol derivatives has also been developed. Investigations on the glycosidase inhibitory properties of these novel azido- and amino-inositols unraveled the potentials of these classes of compounds as novel class of glycosidase inhibitors. Both d and l forms of these cyclitols could be synthesized from myo-inositol in gram scales and hence by exploiting the difference in reactivities of cis- and trans-ketals, a variety of protected derivatives, which are useful for the synthesis of unnatural phosphoinositols and natural products, can be synthesized.  相似文献   

2.
Inositol and their derivatives are important class of biologically active natural products. Among the nine theoretically possible inositols, six are known to occur in nature. Interestingly one or more methyl ethers of these inositols have been isolated from plants and these methyl inositols are presumed to have important functions in plant biology. Brahol and pinpollitol are two naturally occurring methylated inositols reported to have allo-inositol and chiro-inositol configurations, respectively. Adopting our sulfonate inversion strategies for synthesizing protected chiro- and allo-inositols from cheaply available myo-inositol in combination with new methods we have achieved the total syntheses of these methylated inositols. The proposed structure of brahol has been synthesized in six steps from myo-inositol. We have not only disproved the proposed structure of brahol but also established its correct structure. Also, we have efficiently synthesized pinpollitol and its positional isomer from myo-inositol. These works involve several selective protection-deprotection strategies of inositol hydroxyl groups.  相似文献   

3.
Abstract

We have determined the preferred conformers in solution by a detailed NMR analysis using COSY and HETCOR experiments of three inositol isomers: myo (1), scyllo (2) and epi (3) plus sixteen derivatives of myo-inositol: 1,2,3,4,5,6-hexa-O-acetyl-myo-inositol (4), 1,2,-O-isopropylidene-myo-inositol (5), 1,2:4,5-di-O-isopropylidene-myo-inositol (6), 3,4,5,6-tetra-O-acetyl-1,2-O-isopropylidene-myo-inositol (7), 3,4,5,6-tetra-O-acetyl-myo-inositol (8), 1,2-O-isopropylidene-3,6-di-O-tosyl-myo-inositol (9), 1,2-O-isopropylidene-3,4,6-tri-O-tosyl-myo-inositol (10), 1,2:4,5-di-O-isopropylidene-3-O-tosyl-myo-inositol (11), 3,6-di-O-benzyl, 1,2:4,5-di-O-isopropylidene-myo-inositol (12), 3,6-di-O-benzyl-1,2-O-isopropylidene-myo-inositol (13), 3,6-di-O-benzyl-myo-inositol (14), 1,2-O-cyclohexylidene-myo-inositol (15), 1,2:4,5-di-O-cyclohexylidene-myo-inositol (16), 1,2:5,6-di-O-cyclohexylidene-myo-inositol (17), 1,3,5-O-(orthoformate)-myo-inositol (18) and 2-benzyl-1,3,5-O-(orthoformate)-myo-inositol (19). The X-ray diffraction structure of compounds 2, 6-8, 18 and 19 are reported.

  相似文献   

4.
The total synthesis of syributins 1 and 2 using the Baylis-Hillman adduct of 2,3-O-isopropylidene-R-glyceraldehyde-ethyl acrylate as starting material followed by ring closing metathesis (RCM) of the acrylate derivative of the ensuing diol as the key step is reported.  相似文献   

5.
Kin-ichi Oyama 《Tetrahedron》2004,60(9):2025-2034
We have succeeded in the first total synthesis of apigenin 7,4′-di-O-β-d-glucopyranoside (1a), a component of blue pigment, protodelphin, from naringenin (2). Glycosylation of 2 according to Koenigs-Knorr reaction provided a monoglucoside 4a in 80% yield, and this was followed by DDQ oxidation to give apigenin 7-O-glucoside (12a). Further glycosylation of 4′-OH of 12a with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl fluoride (5a) was achieved using a Lewis acid-and-base promotion system (BF3·Et2O, 2,6-di-tert-butyl-4-methylpyridine, and 1,1,3,3-tetramethylguanidine) in 70% yield, and subsequent deprotection produced 1a. Synthesis of three other chiral isomers of 1a, with replacement of d-glucose at 7 and/or 4′-OH by l-glucose (1b-d), and four chiral isomers of apigenin 7-O-β-glucosides (6a,b) and 4′-O-β-glucosides (7a,b) also proved possible.  相似文献   

6.
4,8-Anhydro-d-glycero-d-ido-nonanitol 1,6,7-trisphosphate (9), designed as a novel IP3 receptor ligand having an α-C-glycosidic structure, was synthesized via a radical cyclization reaction with a temporary connecting allylsilyl group as the key-step. Phenyl 2-O-allyldimethylsilyl-3,4-bis-O-TBS-1-seleno-β-d-glucopyranoside (10a), conformationally restricted in the unusual 1C4-conformation, was treated with Bu3SnH/AIBN to form the desired α-cyclization product 16a almost quantitatively. On the other hand, when a conformationally unrestricted O-benzyl-protected 2-O-allyldimethylsilyl -1-selenoglucoside 15 was used as the substrate, the radical reaction was not stereoselective and gave a mixture of the α-and β-products. From 16a, the target C-glucoside trisphosphate 9 was synthesized via phosphorylation of the hydroxyls by the phosphoramidite method. During the synthetic study, an efficient procedure for the oxidative C-Si bond cleavage, via a nucleophilic substitution at the silicon with p-MeOPhLi followed by Fleming oxidation, was developed. The C-glycoside 9 was found to be a full agonist for Ca2+ mobilization, although its activity was weaker than that of the natural ligand IP3. Thus, the α-C-glucosidic structure was shown to be a useful mimic of the myo-inositol backbone of IP3.  相似文献   

7.
The diol, 1d-1,2,5,6-tetra-O-methyl-chiro-inositol (D-9), can be conveniently prepared from 1d-chiro-inositol using a series of standard protection/deprotection steps. Treatment of D-9 with Ph2PCl gives the chiral diphosphinite, 1d-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol (D-10). The structure of D-10 has been determined by X-ray crystallography. Using 1l-chiro-inositol as starting material and following the same synthetic sequence used to produce D-10, the other enantiomer of this diphosphinite, 1l-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol (L-10) can also be obtained. Ruthenium complexes of these diphosphinite ligands can be conveniently prepared through ligand substitution reactions with appropriate substrate complexes. Thus, treatment of [RuCl2(COD)]n with D-10 in the presence of triethylamine produces the bis(diphosphinite) complex, RuHCl{κ2(P,P)-1d-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol}2 (11). In addition, reaction between RuCl2(PPh3)3, D-10 and (1R,2R)-(+)-1,2-diphenylethylenediamine gives the mono(diphosphinite) complex, RuCl22(P,P)-1d-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol}{κ2(N,N)-(1R,2R)-(+)-1,2-diphenylethylenediamine} (12). The closely related complex RuCl22(P,P)-1d-3,4-bis(O-diphenylphosphino)-1,2,5,6-tetra-O-methyl-chiro-inositol}{κ2(N,N)-(1S,2S)-(−)-1,2-diphenylethylenediamine} (13) can be obtained in a similar manner using (1S,2S)-(−)-1,2-diphenylethylenediamine in place of the corresponding (+)-isomer. These new chiral, diphosphinite complexes catalyse the hydrogenation of the ketones acetophenone and 3-quinuclidinone to give the corresponding alcohols with low to moderate enantiomeric excesses. The complexes are not catalytically active for the hydrogenation of the olefin dimethylitaconate or the α-ketoester methyl benzoylformate.  相似文献   

8.
All four stereoisomers of 4,8-dimethyldecanal (1) were synthesized from the enantiomers of 2-methyl-1-butanol and citronellal. Enantioselective GC analysis enabled separation of (4R,8R)-1 and (4R,8S)-1 from a mixture of (4S,8R)-1 and (4S,8S)-1, when octakis-(2,3-di-O-methoxymethyl-6-O-tert-butyldimethylsilyl)-γ-cyclodextrin was employed as a chiral stationary phase. Complete separation of the four stereoisomers of 1 on reversed-phase HPLC at −54 °C was achieved after oxidation of 1 to the corresponding carboxylic acid 12 followed by its derivatization with (1R,2R)-2-(2,3-anthracenedicarboximido)cyclohexanol, and the natural 1 was found to be a mixture of all the four stereoisomers.  相似文献   

9.
A simple, mild and efficient CAN mediated oxidation of Morita-Baylis-Hillman adducts of 5-methyl-N-alkylisatins 1a-13a to 5-formyl-N-alkylisatins 1b-13b under ambient reaction conditions is reported. Simple and isomerized 5-methyl-N-alkylisatin derivatives 1-4 have also been tested and failed to provide the corresponding formylated products. A plausible reaction mechanism has been proposed.  相似文献   

10.
In this paper the comparative structural analysis of a series of compounds (methyl α-d-glucopyranoside, methyl 4,6-O-ethylidene-α-d-glucopyranoside (2), methyl 2,3-di-O-nitro-4,6-O-ethylidene-α-d-glucopyranoside and methyl 3-O-nitro-4,6-O-ethylidene-α-d-glucopyranoside) by way of synthesis leading to methyl 3-O-nitro-α-d-glucopyranoside (5) is reported. The title compound (5) is a novel d-glucosidic mononitrate having potential biological activity against cardiovascular diseases. The structural analysis was supported by single-crystal X-ray diffraction (XRD), 13C CP/MAS NMR spectroscopy and DFT calculations. In the case of 2 and 5, XRD analysis could not be performed due to the fact that 2 is highly hygroscopic and 5 forms improper crystals. However, the molecular structures of 2 and 5 were obtained on the basis of experimental (existing XRD data for similar compounds) and theoretical (DFT optimization) approaches. This showed of very good agreement with the 13C CP/MAS NMR spectral data.  相似文献   

11.
Reversed-phase HPLC analysis of the methanol extract of the seeds of Centaurea montana afforded a flavanone, montanoside (4), six epoxylignans, berchemol (7), berchemol 4′-O-β-d-glucoside (5), pinoresinol (10), pinoresinol 4-O-β-d-glucoside (8), pinoresinol 4,4′-di-O-β-d-glucoside (6), pinoresinol 4-O-apiose-(1→2)-β-d-glucoside (9), two quinic acid derivatives, trans-3-O-p-coumaroylquinic acid (1), cis-3-O-p-coumaroylquinic acid (2), and eight indole alkaloids, tryptamine (3), N-(4-hydroxycinnamoyl)-5-hydroxytryptamine (11), cis-N-(4-hydroxycinnamoyl)-5-hydroxytryptamine (12), centcyamine (16), cis-centcyamine (17), moschamine (13), cis-moschamine (14) and a dimeric indole alkaloid, montamine (15). While the structures of two new compounds, montanoside (4) and montamine (15), were established unequivocally by UV, IR, MS and a series of 1D and 2D NMR analyses, all known compounds were identified by comparison of their spectroscopic data with literature data. The antioxidant properties of these compounds were assessed by the DPPH assay, and their toxicity towards brine shrimps and cytotoxicity against CaCo-2 colon cancer cells were evaluated by the brine shrimp lethality and the MTT cytotoxicity assays, respectively. The novel dimer, montamine (15), showed significant in vitro anticolon cancer activity (IC50=43.9 μM) while that of the monomer, moschamine (13), was of a moderate level (IC50=81.0 μM).  相似文献   

12.
The readily available 3-O-benzoyl-4-O-benzyl-1,2-O-isopropylidene-β-d-fructopyranose (6) was straightforwardly transformed into 5-azido-3-O-benzoyl-4-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (8), after treatment under modified Garegg's conditions followed by reaction of the resulting 3-O-benzoyl-4-O-benzyl-5-deoxy-5-iodo-1,2-O-isopropylidene-α-l-sorbopyranose (7) with lithium azide in DMF. O-debenzoylation at C(3) in 8, followed by oxidation and reduction caused the inversion of the configuration to afford the corresponding β-d-psicopyranose derivative 11 that was transformed into the related 3,4-di-O-benzyl derivative 12. Cleavage of the acetonide of 12 to give 13 followed by O-tert-butyldiphenylsilylation afforded a resolvable mixture of 14 and 15. Compound 14 was transformed into (2R,3R,4S,5R)- (17) and (2R,3R,4S,5S)-3,4-dibenzyloxy-2′,5′-di-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (18) either by a tandem Staudinger/intramolecular aza-Wittig process and reduction of the resulting intermediate Δ2-pyrroline (16), or only into 18 by a high stereoselective catalytic hydrogenation. When 15 was subjected to the same protocol, (2S,3S,4R,5R)- (21) and (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (22) were obtained, respectively.  相似文献   

13.
The readily available 3-O-benzoyl-4-O-benzyl-1,2-O-isopropylidene-5-O-methanesulfonyl-β-d-fructopyranose (5) was straightforwardly transformed into its d-psico epimer (8), after O-debenzoylation followed by oxidation and reduction, which caused the inversion of the configuration at C(3). Compound 8 was treated with lithium azide yielding 5-azido-4-O-benzyl-5-deoxy-1,2-O-isopropylidene-α-l-tagatopyranose (9) that was transformed into the related 3,4-di-O-benzyl derivative 10. Cleavage of the acetonide in 10 to give 11, followed by regioselective 1-O-pivaloylation to 12 and subsequent catalytic hydrogenation gave (2R,3S,4R,5S)-3,4-dibenzyloxy-2,5-bis(hydroxymethyl)-2′-O-pivaloylpyrrolidine (13). Stereochemistry of 13 could be determined after O-deacylation to the symmetric pyrrolidine 14. Total deprotection of 14 gave 2,5-imino-2,5-dideoxy-d-galactitol (15, DGADP).  相似文献   

14.
A cis-1,2-cyclohexanediol, 1,4,5,6-tetra-O-benzyl-myo-inositol, was selectively protected at the axial C2-hydroxyl via acid-mediated rearrangement of the corresponding 1,2-orthoacetate, or via the base-induced migration of a protecting group that had previously been easily installed with complete regioselectivity at the adjacent equatorial hydroxyl. Esters 4a-6a were synthesized in high yields (75-82%) while sulfonate 7a and silyl ether 8a were obtained in 85 and 31% yields, respectively. The migration of the esters induced by DBU results in equilibrium between regioisomers favouring the C2 protected isomer, but NaH induced migration of sulfonyl and silyl groups results in complete migration from equatorial to axial hydroxyl groups.  相似文献   

15.
The article describes the synthesis and evaluation of the dichromate anion (Cr2O72−/HCr2O7) extraction properties of p-tert-butylcalix[4]arene diamide derivatives (5-7) containing different binding sites. Among these compounds, 6 and 7 have been synthesized via aminolysis in a toluene-methanol solvent system with 3-aminomethylpyridine and 3,6-dioxa-1,8-diamino octane, respectively. On the other hand, compound 5 has been synthesized via an acid chloride method due to its inefficiency under aminolysis. The extraction properties of these diamides toward dichromate anions are studied by liquid-liquid extraction. The results show that p-tert-butylcalix[4]arene diamide derivative 7 exhibited a much higher affinity toward dichromate anions than that of 6 due to its special structure, while 5 was an ineffective ligand for these anions.  相似文献   

16.
Novel proline-catalyzed multicomponent reactions (MCRs) for the synthesis of fused pyrrolo[3,4-d]tetrahydropyrimidines 7 and 9 with different substituted patterns have been developed, which provide rapid access to a library of compounds 7 and 9 in medium to excellent yields, by using N-methyl-α-aryl(alkyl)aminomaleimides, amines, and aldehydes as reactants. The catalyst and the ratio of reactants were found to have significant impact on these reactions, and a reasonable mechanism was also proposed.  相似文献   

17.
Siddappa A. Patil 《Tetrahedron》2009,65(15):2889-1412
N,N,O-Tridentate ligands 1-9 were prepared from the condensation of amines with nine aromatic aldehydes or ketones. These ligands are thermally stable and neither air- nor moisture-sensitive. Combination of either 2-methoxy-6-[(pyridine-2-ylmethylimino)-methyl]-phenol, 1 or 2-(benzothiazol-2-yl-hydrazonomethyl)-4,6-di-tert-butyl-phenol, 6 with Pd(OAc)2 furnished an excellent catalyst precursor for the Suzuki-Miyaura cross-coupling of various aryl bromides with arylboronic acids. The effects of varying solvents, bases, and ligand/palladium ratios on the performance of the coupling reaction were investigated. The molecular structures of both free ligand 1 and its palladium acetate complex 10 were determined by single-crystal X-ray diffraction methods. The DFT studies revealed that the catalytic performance of palladium complexes involving this type of a ligand may differ greatly upon a small variation in its structure.  相似文献   

18.
A general method has been developed for the synthesis of oligosaccharides consisting of (1→2)- and (1→3)-linked rhamnans with GlcNAc side chains. As examples, highly effective and convergent syntheses of two decasaccharides in the O polysaccharide moiety of the lipopolysaccharide of the phytopathogenic bacterium Pseudomonas syringae pv. ribicola NCPPB 1010 were achieved. The two decasaccharides consist of O polysaccharide repeating units I+II and II+I, respectively. Allyl 3-O-acetyl-4-O-benzoyl-α-l-rhamnopyranoside, allyl 2-O-benzoyl-3-O-chloroacetyl-α-l-rhamnopyranoside, 2,4-di-O-benzoyl-3-O-chloroacetyl-α-l-rhamnopyranosyl trichloroacetimidate, and 3-O-acetyl-2,4-di-O-benzoyl-α-l-rhamnopyranosyl trichloroacetimidate, which were obtained by highly regioselective 3-O-acylations, were used as the key synthons to obtain the required α-(1→2)- and α-(1→3)-linked rhamnoocta saccharide acceptors with 33- and 37-free hydroxyl groups. Therefore, several disaccharides were synthesized, from which tetrasaccharides and hexasaccharides were then synthesized. Coupling of the hexasaccharide donors with the disaccharide acceptors gave the octasaccharide acceptors. Finally, the coupling of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl trichloroacetimidate with the octasaccharide acceptors, followed by deprotection, afforded the two target decasaccharides. A repeating hexasaccharide unit of the cell wall polysaccharide of β-hemolytic Streptococci Group A was also synthesized in a similar way.  相似文献   

19.
Epimeric 3-carboxycyclopentylglycines (+)-10/(−)-10 and (+)-11/(−)-11 were efficiently prepared by the way of a sequence of Diels-Alder and retro-Claisen reactions. The synthesis incorporates a concise and inexpensive chemoenzymatic resolution of racemic compounds 4,5a, the N,O-protected derivatives of amino acids 10,11. Systematic screening with different enzymes and microorganisms was performed to select a very efficient catalyst for the separation of the racemic mixtures. The reaction conditions allowing deprotection of both ester and amino functions and to avoiding epimerization processes were studied. Enantiomers (i.e., (+)-10/(−)-10 and (+)-11/(−)-11) were obtained in high enantiopurity. The absolute configuration of all stereocenters was unequivocally assigned.  相似文献   

20.
l-Rhamnose was led, in a 14-step-sequence, to N2-(N,N-dimethylaminomethylene)-1′-O-(4-methoxybenzyl)-3-[2-(4-nitrophenyl)ethyl]biopterin (23), an appropriately protected precursor for 2′-O-glycosylation, while 4,6-di-O-acetyl-2,3-di-O-(4-methoxybenzyl)-α-d-glucopyranosyl bromide (32), a novel glycosyl donor, was efficiently prepared from d-glucose in 8 steps. The first synthesis of 2′-O-(α-d-glucopyranosyl)biopterin (2a) was achieved by treatment of the key intermediate 23 with 32 in the presence of silver triflate and tetramethylurea, followed by successive removal of the protecting groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号