首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The major metabolite of duloxetine is a glucuronide conjugate of 4‐hydroxy duloxetine (4‐HD). However, interestingly, there have been no reports determining concentrations of 4‐HD and no fully validated method has been established for measuring duloxetine and 4‐HD in rat plasma. We developed a method for the simultaneous quantification of duloxetine and its metabolite in rat plasma using high‐performance liquid chromatography tandem mass spectrometry. Duloxetine and 4‐HD were analyzed on a reverse‐phase C18 analytical column after protein precipitation of the plasma sample with methanol, using carbamazepine as an internal standard. The isocratic mobile phase of 5 mm ammonium acetate–methanol (4:6, v/v) was eluted at 0.4 mL/min. Quantification was performed on a triple‐quadrupole mass spectrometer using electrospray ionization, and the ion transition monitored in selective reaction monitoring mode. The coefficient of variation for assay precision was <18.0%, and the accuracy was 84.0–118.0%. This method was successfully used to measure the concentrations of duloxetine and its metabolite in plasma following the oral administration of a single 40 mg/kg dose in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A simultaneous, selective, sensitive and rapid liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of gefitinib, erlotinib and afatinib in 250 μL samples of human blood plasma. Diluted plasma samples were extracted using a liquid‐phase extraction procedure with tert‐butyl methyl ether. The three drugs were separated by high‐performance liquid chromatography using a C18 column and an isocratic mobile phase running at a flow rate of 0.2 mL/min for 5 min. The drugs were detected using a tandem mass spectrometer with electrospray ionization using imatinib as an internal standard. Calibration curves were generated over the linear concentration range of 0.05–100 nm in plasma with a lower limit of quantification of 0.01 or 0.05 nm for all compounds. Finally, the validated method was applied to a clinical pharmacokinetic study in patients with nonsmall‐cell lung cancer (NSCLC) following the oral administration of afatinib. These results indicate that this method is suitable for assessing the risks and benefits of chemotherapy in patients with NSCLC and is useful for therapeutic drug monitoring for NSCLC treatment. As far as we know, this is the first report on LC‐MS/MS method for the simultaneous quantification of NSCLC tyrosine kinase inhibitor plasma concentrations including afatinib. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A simple, sensitive, and selective liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous quantification of olanzapine (OLZ) and its metabolite N‐desmethylolanzapine (DMO) in human plasma for therapeutic drug monitoring. Sample preparation was performed by one‐step protein precipitation with methanol. The analytes were chromatographed on a reversed‐phase YMC‐ODS‐AQ C18 Column (2.0 × 100 mm,3 µm) by a gradient program at a flow rate of 0.30 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer via electrospray ionization in positive ion mode. The method was validated for selectivity, linearity, accuracy, precision, matrix effect, recovery and stability. The calibration curve was linear over the concentration range 0.2–120 ng/mL for OLZ and 0.5–50 ng/mL for DMO. Intra‐ and interday precisions for OLZ and DMO were <11.29%, and the accuracy ranged from 95.23 to 113.16%. The developed method was subsequently applied to therapeutic drug monitoring for psychiatric patients receiving therapy of OLZ tablets. The method seems to be suitable for therapeutic drug monitoring of patients undergoing therapy with OLZ and might contribute to prediction of the risk of adverse reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid, simple and sensitive, liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for simultaneous determination of bergenin, chlorogenic acid and four flavonoids in a QingGanSanJie preparation in rat plasma. Puerarin was selected as the internal standard (IS). Plasma samples were precipitated with methanol and separated with a reverse phase Agilent Poroshell 120 EC‐C18 column using a gradient mobile phase of methanol–water containing 0.1% formic acid (v/v). A triple quadruple mass spectrometer was used for quantification (limit of detection 0.36–5.55 ng/mL). Intra‐day and inter‐day precisions were within 15% and the average extraction recoveries ranged from 85 to 115% for each analyte. The method allowed simultaneous quantification for the first time of the pharmacokinetics of bergenin, chlorogenic acid and four flavonoids after intragastric administration of a QingGanSanJie extract in Sprague–Dawley rats. It was found that bergenin and chlorogenic acid had typical extravascular administration concentration–time curves; flavonoids had a bimodal distribution improving bioavailability and extending the pharmacodynamics period. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, rapid and sensitive liquid chromatography/tandem mass spectrometry method was developed and validated for the quantification of angiotensin‐converting enzyme inhibitor, moexipril, in human plasma. Benazepril was used as an internal standard (IS). Analyte and IS were extracted from the human plasma by liquid–liquid extraction technique using ethyl acetate. The reconstituted samples were chromatographed on a C18 column by using a mixture of methanol and 0.1% formic acid buffer (85:15, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The calibration curve obtained was linear (r ≥ 0.99) over the concentration range of 0.2–204 ng/mL. The multiple reaction‐monitoring mode was used for quantification of ion transitions at m/z 499.4/234.2 and 425.2/351.1 for moexipril and IS, respectively. The results of the intra‐ and inter‐day precision and accuracy studies were well within the acceptable limits. A run time of 2.0 min for each sample made it possible to analyze more than 400 plasma samples per day. The proposed method was found to be applicable to clinical studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Endothelin receptor antagonists (ERAs) such as, ambrisentan, macitentan and sitaxentan are primarily used for the treatment of pulmonary arterial hypertension. Considering the rise in endothelin in pre-eclampsia, ERAs may also be useful in its treatment. To evaluate the pharmacokinetics of ERAs, a rapid ultra-performance liquid chromatography tandem mass spectrometry method was developed and validated to determine the concentration of ambrisentan, macitentan and sitaxentan in human plasma. Plasma samples were treated with methanol to induce protein precipitation. A chromatographic separation was performed on a C18 column using a gradient of methanol–water containing 0.1% formic acid and 0.013% ammonium acetate and a flow rate of 0.5 ml/min. Multiple reaction monitoring was used for quantification. This method was validated in a linear range of 20.28–2028 μg/l for ambrisentan, 4.052–405.2 μg/l for macitentan and 205.4–10 270 μg/l for sitaxentan. The method was successfully validated according to US Food and Drug Administration guidelines to determine the concentrations of macitentan, ambrisentan and sitaxentan in human plasma. This method is now being used for study samples and clinical patient samples.  相似文献   

7.
Copen is a derivative obtained from the structural modification of osthole, which inhibits tumoral proliferation in many tumor cell lines. A rapid and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was established for the quantification of copen in rat plasma. After a simple sample preparation procedure by one‐step protein precipitation with methanol, copen and bicalutamide (internal standard, IS) were chromatographed on a Zorbax SB‐C18 (4.6×100 mm, 1.8 µm) column with a mobile phase consisting of methanol–5 mm ammonium formate water with 0.1% formic acid (80:20, v/v). MS detection was performed on a triple quadrupole tandem mass spectrometer in the multiple reaction monitoring mode with a positive eletrospray ionization source. The assay was validated in the concentration range of 51.58–20630 ng/mL, with a limit of quantitation (LOQ) of 51.58 ng/mL. The intra‐ and inter‐day precisions (relative standard deviation) were ≤3.21 and ≤11.3%, respectively, with accuracy (%) in the range of 94.66–102.1%. The method was fully validated in a study of the pharmacokinetics of copen (25 mg/kg) after intragastric administration in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A quick, easy, effective method followed by ultra‐high‐pressure liquid chromatography coupled with linear ion trap–Orbitrap tandem mass spectrometry (UHPLC‐LTQ‐Orbitrap MS) was developed for the simultaneous identification and quantification of the metabolites produced by amentoflavone (AMF) in human intestinal bacteria from human feces. The method validated for quantification of AMF concerning precision, accuracy, recovery, matrix effect, stability and limits showed acceptable results. Compared with blank human intestinal bacteria chromatography, three metabolites were identified based on high‐accuracy protonated precursors and multi‐stage mass spectrometry (MSn ) using the proposed strategy. At the same time, a new method was developed for semi‐quantification of three metabolites. We describe the trend over 24 h of concentration–time curves for AMF and its metabolites. Moreover, the main metabolic pathway of AMF was clarified in human intestinal bacteria. The method was validated and successfully applied to the detection and quantification of AMF and its metabolites.  相似文献   

9.
A sensitive and selective ultra-high performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for the simultaneous determination of seven oral oncolytics (two PARP inhibitors, i.e. olaparib and niraparib, and five tyrosine kinase inhibitors, i.e. cobimetinib, cabozantinib, dabrafenib, vemurafenib and regorafenib, plus its active metabolite regorafenib M2) in EDTA plasma was developed and validated. Stable isotope-labelled internal standards were used for each analyte. A simple protein precipitation method was performed with acetonitrile. The LC–MS/MS system consisted of an Acquity H-Class UPLC system, coupled to a Xevo TQ-S micro tandem mass spectrometer. The compounds were separated on a Waters CORTECS UPLC C18 column (2.1 × 50 mm, 1.6 μm particle size) and eluted with a gradient elution system. The ions were detected in the multiple reaction monitoring mode. The method was validated for cobimetinib, cabozantinib, dabrafenib, niraparib, olaparib, vemurafenib, regorafenib and regorafenib M2 over the ranges 6–1000, 100–5000, 10–4000, 200–2000, 200–20,000, 5000–100,000, 500–10,000 and 500–10,000 μg/L, respectively. Within-day accuracy values for all analytes ranged from 86.8 to 115.0% with a precision of <10.4%. Between-day accuracy values ranged between 89.7 and 111.9% with a between-day precision of <7.4%. The developed method was successfully used for guiding therapy with therapeutic drug monitoring in cancer patients and clinical research programs in our laboratory.  相似文献   

10.
A simple, rapid and sensitive liquid chromatography–tandem mass spectroscopy (LC–MS/MS) method was developed and validated for the determination of ethyl gallate, a pharmacologically active constituent isolated from Lagerstroemia speciosa (Linn.) Pers. This method was used to examine the pharmacokinetics of ethyl gallate and its major metabolite gallic acid in rat plasma using propyl gallate as an internal standard. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a Zorbax SB‐C18 column (3.5 μm, 2.1 × 50 mm) with an isocratic mobile phase consisted of methanol–acetonitrile–10 mM ammonium acetate (10 : 25 : 65, v/v/v) containing 0.1% formic acid at a flow rate of 0.25 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple‐reaction monitoring mode using the electrospray ionization technique in negative mode. The lower limits of quantification of gallic acid and ethyl gallate of the method were 0.5 and 1.0 ng/mL. The intra‐day and inter‐day accuracy and precision of the assay were less than 8.0%. This method has been applied successfully to a pharmacokinetic study involving the intragastric administration of ethyl gallate to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Yonkenafil is a promising drug for treatment of male erectile dysfunction. Previous studies showed that the piperazine‐N,N’‐deethylation metabolite, piperazine‐N‐deethylation metabolite, and piperazine‐N‐deethylation‐N,N’‐deethylation metabolite were the major metabolites of yonkenafil after extensive metabolism. We developed a sensitive and selective method for the simultaneous quantification of yonkenafil and its major metabolites using high‐throughput liquid chromatography with tandem mass spectrometry. Analytes and internal standard were extracted from a small quantity of plasma (50 μL) using liquid–liquid extraction with diethyl ether/dichloromethane (60:40, v/v), and the baseline separation was achieved on Zorbax SB‐C18 column using ammonia/water/methanol (0.2:20:80, v/v/v) as the mobile phase. The assay was performed with an electrospray positive ionization mass spectrometry through the multiple‐reaction monitoring mode within 2 min. Calibration curve of the method was linear within the range of 1.00–1000 ng/mL for all the analytes with the intra‐ and interday precisions of 4.0–5.2 and 4.0–5.3% for yonkenafil, 3.1–4.9 and 3.1–5.2% for the piperazine‐N,N’‐deethylation metabolite, 4.8–6.8 and 4.8–7.3% for the piperazine‐N‐deethylation metabolite, and 2.9–6.1 and 5.4–6.3% for the piperazine‐N‐deethylation‐N,N’‐deethylation metabolite, respectively. The recoveries were above 90% with low matrix effects. The validated assay was successfully applied to support a preclinical pharmacokinetic study in six rats using a single oral dose of yonkenafil (8 mg/kg).  相似文献   

12.
In this study, a sensitive, selective and reproducible liquid chromatography–tandem mass spectrometry method for the simultaneous determination of 1,5‐dicaffeoylquinic acid (1,5‐DCQA) and its active metabolites, 1‐caffeoyl‐5‐feruoylquinic acid and 1,5‐O‐diferuoylquinic acid, in human plasma, using puerarin as internal standard, was developed and validated. Analytes were extracted from plasma samples by liquid–liquid extraction with ethyl acetate, separated on a C18 reversed‐phase column with water containing 5 mM ammonium acetate and acetonitrile as the mobile phase and detected by electrospray ionization mass spectrometry in negative selected reaction monitoring mode. The accuracy and precision of the method were acceptable and linearity was good over the range 1–200 ng/mL for each analyte. In addition, the selectivity, extraction recovery and matrix effect were satisfactory too. The validated LC‐MS/MS method was successfully applied to phase II clinical pharmacokinetic study of 1,5‐DCQA in patients. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
4‐Methyl‐piperazine‐1‐carbodithioc acid 3‐cyano‐3, 3‐diphenylpropyl ester hydrochloride (TM208), a newly synthesized anticancer compound, was quantified using liquid chromatography–tandem mass spectrometry (LC‐MS/MS) for the first time. A simple, rapid and sensitive assay method using propranolol as internal standard (IS) after one‐step precipitation with acetonitrile was developed and validated to determine TM208 in rat plasma. Separation was achieved on a reverse‐phase C18 column with a mobile phase composed of methanol–water (pH4.0) containing 5 m m ammonium acetate in gradient elution mode. A triple quadrupole tandem mass spectrometer with electrospray ionization source was used as detector and operated by multiple reaction monitoring in the positive ion mode. Calibration curves were linear (r > 0.99) between 0.2 and 500 ng/mL. The quantitative limit was 0.2 ng/mL; reliable precision and accuracy were validated by relative standard deviation values in the range 3.44–13.15% and relative error values between ?0.58 and ?9.78%. The method was successfully applied to preclinical pharmacokinetic studies of TM208. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of pethidine in human plasma was developed and validated over the concentration range of 4–2000 ng/mL. After addition of ketamine as internal standard, liquid–liquid extraction was used to produce a protein‐free extract. Chromatographic separation was achieved on a 100 × 2.1 mm, 5 µm particle, AllureTM PFP propyl column, with 45:40:15 (v/v/v) acetonitrile–methanol–water containing 0.2% formic acid as mobile phase. The MS data acquisition was accomplished by multiple reactions monitoring mode with positive electrospray ionization interface. The lower limit of quantification was 4 ng/mL; for inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 7%, and the accuracy was within 95.9–106.5%. The method is sensitive and simple, and was successfully applied to analysis of samples of clinical intoxication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
To enable the reliable quantification of ciprofloxacin in human urine, a sensitive and selective assay based on liquid chromatography–tandem mass spectrometry was developed. The chromatographic separation of the ciprofloxacin was carried out on a Zorbex Eclipse C18 column using methanol and ammonium acetate as a mobile phase by the gradient elution method. The developed assay covered a wide range of concentrations (1.56–100 ng/mL) with a lower limit of detection of 0.76 ng/mL. Quantification was performed using the multiple reaction monitoring transitions 331.8/231 for ciprofloxacin and 362/318 for ofloxacin (internal standard). This assay was validated for linearity, accuracy, precision and recovery. The validated method was then applied to the biodegradability of ciprofloxacin (99%) from human urine in the microbial fuel cell.  相似文献   

16.
A rapid, sensitive and selective liquid chromatography–tandem mass spectrometry method for the detection of tandospirone (TDS) and its active metabolite 1‐[2‐pyrimidyl]‐piperazine (1‐PP) in Sprague–Dawley rat plasma is described. It was employed in a pharmacokinetic study. These analytes and the internal standards were extracted from plasma using protein precipitation with acetonitrile, then separated on a CAPCELL PAK ADME C18 column using a mobile phase of acetonitrile and 5 mm ammonium formate acidified with formic acid (0.1%, v/v) at a total flow rate of 0.4 mL/min. The detection was performed with a tandem mass spectrometer equipped with an electrospray ionization source. The method was validated to quantify the concentration ranges of 1.000–500.0 ng/mL for TDS and 10.00–500.0 ng/mL for 1‐PP. Total time for each chromatograph was 3.0 min. The intra‐day precision was between 1.42 and 6.69% and the accuracy ranged from 95.74 to 110.18% for all analytes. Inter‐day precision and accuracy ranged from 2.47 to 6.02% and from 98.37 to 105.62%, respectively. The lower limits of quantification were 1.000 ng/mL for TDS and 10.00 ng/mL for 1‐PP. This method provided a fast, sensitive and selective analytical tool for quantification of tandospirone and its metabolite 1‐PP in plasma necessary for the pharmacokinetic investigation.  相似文献   

17.
A sensitive and reliable high‐performance liquid chromatography–mass spectrometry (LC–MS/MS) was developed and validated for simultaneous quantification IC87114, roflumilast (RFM), and its active metabolite roflumilast N‐oxide (RFN) using tolbutamide as an internal standard. The analytes were extracted by using liquid–liquid extraction and separated on a reverse phase C18 column (50 mm × 3 mm i.d., 4.6 µ) using methanol: 2 mM ammonium acetate buffer, pH 4.0 as mobile phase at a flow rate 1 mL/min in gradient mode. Selective reaction monitoring was performed using the transitions m/z 398.3 > 145.9, 403.1 >186.9, 419.1 > 187.0 and 271.1 > 155.0 to quantify quantification IC87114, RFM, RFN and tolbutamide, respectively. The method was validated over the concentration range of 0.1–60 ng.mL?1 for RFM and RFN and 6 to 2980 ng.mL?1 for IC87114. Intra‐ and inter‐day accuracy and precision of validated method were within the acceptable limits of <15% at all concentrations. Coefficients of correlation (r2) for the calibration curves were >0.99 for all analytes. The quantitation method was successfully applied for simultaneous estimation of IC87114, RFM and RFN in a pharmacokinetic drug–drug interaction study in Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Major depressive disorder is a severe, life‐threatening and highly prevalent psychiatric disorder. A high percentage of people suffering from depression are characterized by hyperactivity of the hypothalamic–pituitary–adrenal axis, resulting in plasma glucocorticoid (cortisol in human and corticosterone in rodent) elevations. Glucocorticoid is a critical molecule in the onset of pathology of depression. A simple, highly sensitive and specific method based on ultra‐fast liquid chromatography–tandem mass spectrometry method has been developed for the quantitation of corticosterone in mouse plasma for the first time, which provides technical support for the high‐throughput measurement for clinical determination of corticosterone in biological samples. Samples were spiked with methanol to precipitate the protein, and then chromatographed on an Agilent Zorbax Eclipse Plus C18 (100 × 2.1 mm,1.8 µm) column by linear gradient elution with methanol and 0.1% formic acid as the mobile phase within 5 min. The detection of corticosterone was performed on ultra‐fast liquid chromatography–triple quadrupole tandem mass spectrometry in the positive ion. The ions [M + H]+ m/z 347.2 → m/z 311.1 for corticosterone and [M + H]+ m/z 363.2 → m/z 327.2 for hydrocortisone (internal standard) were used for quantitative determination. The lower quantification limit for corticosterone was 1 ng/mL. The validated method was successfully applied to the quantitation of corticosterone in mouse plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this study, a specific and quick ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) method was fully developed and validated for simultaneous measurement of the rat plasma levels of vortioxetine (VOR), Lu AA34443 (the major metabolite of VOR), fluoxetine and its metabolite norfluoxetine with diazepam as the internal standard (IS). After a simple protein precipitation with acetonitrile for sample preparation, the separation of the analytes were performed on an Acquity UPLC BEH C18 (2.1 × 50 mm, 1.7 μm) column, with acetonitrile and 0.1% formic acid in water as mobile phase by gradient elution. The detection was achieved on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via an electrospray ionization source. Good linearity was observed in the calibration curve for each analyte. The data of precision, accuracy, matrix effect, recovery and stability all conformed to the bioanalytical method validation of acceptance criteria of US Food and Drug Administration recommendations. The newly developed UPLC–MS/MS method allowed simultaneous quantification of VOR, fluoxetine and their metabolites for the first time and was successfully applied to a pharmacokinetic study in rats.  相似文献   

20.
A sensitive and specific high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the determination of Grayanotoxin I (GTX I) and Grayanotoxin III (GTX III) in rat whole blood. Grayanotoxins (GTXs) and clindamycin as internal standard (IS) were extracted from rat blood via solid‐phase extraction using PEP solid‐phase extraction cartridges. Chromatographic separation of the analytes was achieved on a Kinetex C18 (100 × 2.1 mm, 2.6 µm) reversed‐phase column using a gradient elution with the mobile phase of 1% acetic acid in water and methanol at a flow rate of 0.2 mL/min. Electrospray ionization mass spectrometry was operated in the positive ion mode with multiple reaction monitoring. The calibration curves obtained were linear over the concentration range of 1–100 ng/mL with a lower limit of quantification of 1 ng/mL for GTXs. The relative standard deviation of intra‐day and inter‐day precision was below 6.8% and accuracy ranged from 94.8 to 106.6%. The analytes were stable in the stability studies. The validated method was successfully applied to the quantification and toxicokinetic study of GTXs in rats for the first time after oral administration of 11.52 mg/kg mad honey and 0.35 mg/kg GTX III, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号