首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chromatographic system is developed for the separation and determination of levodopa, biogenic amines, and their metabolites from the catecholamines group: dopamine (DA), epinephrine (E), normetanephrine (NMN), metanephrine (MN), 3,4-dihydroxyphenylacetic acid (DOMA), 3-metoxy-4-hydroxyphenyl-glycol (MHPG), and homovanillic acid (HVA); and indoloamines group: serotonin (5HT) and 5-hydroxyindole-3-acetic acid (5HIAA) in urine. The limit of detection (LOD) and limit of quantitation (LOQ) are determined for all compounds with signal-to-noise ratio (S/N) of 3 and 10, respectively. LOD 10 (ng/mL) and LOQ 30 (ng/mL) are determined for L-DOPA, DOMA, E, NMN, DA, MN, and MHPG, as well as LOD 8 (ng/mL) and LOQ 24 (ng/mL) for HVA, 5HT, and 5HIAA. A fluorescence detector is used. Gradient elution with acetate buffer (pH=4.66) with methanol is applied. In urine samples from patients treated with levodopa, the following concentrations (microg/mL) of analytes are determined: L-DOPA 3.73-46.80, DOMA 1.43-28.43, E 0.83-13.57, NMN 2.58-8.81, DA 24.07-62.11, MN 0.89-66.20, MHPG 6.72-63.64, 5HT 22.96-95.27, 5HIAA 1.45-14.77, and HVA 0.21-15.07.  相似文献   

2.
A novel capillary zone electrophoresis separation coupled to electro spray ionization time‐of‐flight mass spectrometry method was developed for the simultaneous analysis of six toxic alkaloids: brucine, strychnine, atropine sulfate, anisodamine hydrobromide, scopolamine hydrobromide and anisodine hydrobromide in human plasma and urine. To obtain optimal sensitivity, a solid‐phase extraction method using Oasis MCX cartridges (1 mL, 30 mg; Waters, USA) for the pretreatment of samples was used. All compounds were separated by capillary zone electrophoresis at 25 kV within 12 min in an uncoated fused‐silica capillary of 75 μm id × 100 cm and were detected by time‐of‐flight mass spectrometry. This method was validated with regard to precision, accuracy, sensitivity, linear range, limit of detection (LOD), and limit of quantification (LOQ). In the plasma and urine samples, the linear calibration curves were obtained over the range of 0.50–100 ng/mL. The LOD and LOQ were 0.2–0.5 ng/mL and 0.5–1.0 ng/mL, respectively. The intra‐ and interday precision was better than 12% and 13%, respectively. Electrophoretic peaks could be identified by mass analysis.  相似文献   

3.
A novel aqueous in situ derivatization procedure with propyl chloroformate (PCF) for the simultaneous, quantitative analysis of Δ9‐tetrahydrocannabinol (THC), 11‐hydroxy‐Δ9‐tetrahydrocannabinol (OH‐THC) and 11‐nor‐Δ9‐tetrahydrocannabinol‐carboxylic acid (THC‐COOH) in human blood and urine is proposed. Unlike current methods based on the silylating agent [N,Obis(trimethylsilyl)trifluoroacetamide] added in an anhydrous environment, this new proposed method allows the addition of the derivatizing agent (propyl chloroformate, PCF) directly to the deproteinized blood and recovery of the derivatives by liquid–liquid extraction. This novel method can be also used for hydrolyzed urine samples. It is faster than the traditional method involving a derivatization with trimethyloxonium tetrafluoroborate. The analytes are separated, detected and quantified by gas chromatography–mass spectrometry in selected ion monitoring mode (SIM). The method was validated in terms of selectivity, capacity of identification, limits of detection (LOD) and quantification (LOQ), carryover, linearity, intra‐assay precision, inter‐assay precision and accuracy. The LOD and LOQ in hydrolyzed urine were 0.5 and 1.3 ng/mL for THC and 1.2 and 2.6 ng/mL for THC‐COOH, respectively. In blood, the LOD and LOQ were 0.2 and 0.5 ng/mL for THC, 0.2 and 0.6 ng/mL for OH‐THC, and 0.9 and 2.4 ng/mL for THC‐COOH, respectively. This method was applied to 35 urine samples and 50 blood samples resulting to be equivalent to the previously used ones with the advantage of a simpler method and faster sample processing time. We believe that this method will be a more convenient option for the routine analysis of cannabinoids in toxicological and forensic laboratories.  相似文献   

4.
A rapid, sensitive, and reproducible assay is described for the quantitative determination of the monoamine neurotransmitters dopamine, norepinephrine and serotonin, their metabolites, and the internal standard 3,4‐dihydroxybenzlyamine hydro‐bromide in mouse brain homogenate using high‐performance liquid chromatography with electrochemical detection. The method was validated in the following brain areas: frontal cortex, striatum, nucleus accumbens, hippocampus, substantia nigra pars compacta and ventral tegmental area. Biogenic amines and relevant metabolites were extracted from discrete brain regions using a simple protein precipitation procedure, and the chromatography was achieved using a C18 column. The method was accurate over the linear range of 0.300–30 ng/mL (r = 0.999) for dopamine and 0.300–15 ng/mL (r = 0.999) for norepinephrine, 3,4‐dihydroxybenzlyamine hydro‐bromide, homovanillic acid and 5‐hydroxyindolacetic acid, with detection limits of ~0.125 ng/mL (5 pg on column) for each of these analytes. Accuracy and linearity for serotonin were observed throughout the concentration range of 0.625–30 ng/mL (r = 0.998) with an analytical detection limit of ~0.300 ng/mL (12 pg on column). Relative recoveries for all analytes were approximately ≥90% and the analytical run time was <10 min. The described method utilized minimal sample preparation procedures and was optimized to provide the sensitivity limits required for simultaneous monoamine and metabolite analysis in small, discrete brain tissue samples.  相似文献   

5.
A sensitive and selective high-performance liquid chromatographic method has been developed for the determination of tianeptine (Tia) in tablets. The method is based on derivatization of Tia with 4-chloro-7-nitrobenzofurazan (NBD-CI). A mobile phase consisting of acetonitrile-10 mM orthophosphoric acid (pH 2.5; 77 + 23) was used at a flow rate of 1 mL/min on a C18 column. The Tia-NBD derivative was monitored using a fluorescence detector, with emission set at 520 nm and excitation at 458 nm. Gabapentin was selected as an internal standard. Linear calibration graphs were obtained in the concentration range of 45-300 ng/mL. The lower limit of detection (LOD) was 10 ng/mL at a signal-to-noise ratio of 4. The lower limit of quantitation (LOQ) was 45 ng/mL. The relative standard values for intra- and interday precision were <0.46 and <0.57%, respectively. The recovery of the drug samples ranged between 98.89 and 99.85%. No chromatographic interference from the tablet excipients was found. The proposed method was validated in terms of precision, robustness, recovery, LOD, and LOQ. All the validation parameters were within the acceptance range. The proposed method was applied for the determination of Tia in commercially available tablets. The results were compared with those obtained by an ultraviolet spectrophotometric method using t- and F-tests.  相似文献   

6.
A method is described for the simultaneous determination of paracetamol, tizanidine, and diclofenac in mixtures. The method was based on HPLC separation of the three drugs followed by UV detection at 254 nm. The separation was carried out on a Hypersil ODS, C18 (250 x 4.6 mm id, 10 microm particle size) column using the mobile phase aqueous 0.2% ammonium carbonate-methanol (60 + 40, v/v) at a flow rate of 1 mL/min. The linear regression analysis data were used for the regression curve in the range of 170-10 000 ng/mL for paracetamol, 120-10 000 ng/mL for tizanidine, and 20-10 000 ng/mL for diclofenac. No chromatographic interference from tablet excipients was found. In order to check the selectivity of the proposed method, degradation studies were carried out using hydrolysis (acid, basic, and neutral), thermolysis, and oxidation. The developed method, after being validated in terms of precision, robustness, recovery, LOD, and LOQ, was successively applied to the analysis of pharmaceutical formulations and human serum.  相似文献   

7.
An accurate, sensitive and least time consuming reverse phase high performance liquid chromatographic (RP‐HPLC) method for the estimation of captopril in the presence of non steroidal anti‐inflammatory drugs in formulation and human serum has been developed and validated. Chromatographic separation was conducted on prepacked Purospher star C18 (5 μm, 25 × 0.46 cm) column at room temperature using methanol:water (80:20 v/v) as a mobile phase, pH adjusted at 2.8 with o‐phosphoric acid and at a flow rate of 1.0 mL min−1, while UV detection was performed at 227 nm. The limit of detection and quantification for captopril were 1 and 0.35 ng mL−1, while that for (NSAID's) i.e. flurbiprofen, ibuprofen, diclofenac sodium and mefenamic acid LOD were 0.2, 1, 2 and 0.4 ng mL−1 respectively and LOQ were 0.9, 2.9, 8 and 1 ng mL−1 Analytical recovery was > 98.1%. The method used for the quantitative analysis of commonly administered non steroidal anti‐inflammatory drugs (NSAID's) i.e. ibuprofen, flurbiprofen, diclofenac sodium and mefenamic acid alone or in combination with captopril from API (active pharmaceutical ingredients), dosage formulations and in human serum. The established method is rapid (RT < 12 min), accurate (recovery > 98.1%), selective (no interference of excepients and other commonly used drugs and food) and sensitive (LOQ 3.5 ng mL;‐1) and reproducible (SD ± 0.003).  相似文献   

8.
Berger  Terry A.  Berger  Blair K. 《Chromatographia》2013,76(23):1631-1639

Nine widely used veterinary sulfonamide drugs were baseline separated (R s ≥1.5) in just over 4 min using a 3 × 100 mm, 1.8 μm RX-Sil column, with 9.2 % methanol in carbon dioxide, at 110 bar and 30 °C, with direct UV detection at 260 nm using a 3 mm, 2 μL tapered flow cell. Pressure drop was only 172 bar. Optimization was difficult due to the similarity in structures. Small changes in modifier concentration, temperature and pressure, each tended to improve the resolution of some peak pairs but degraded the resolution of others. There were four critical pairs, each responding differently to changes in conditions. Optimization was performed by plotting resolution between pairs as a function of modifier concentration first, temperature second, and outlet pressure third. Retention time was then minimized by changing flow rate. The estimated limit of quantitation (LOQ, S/N >10), for direct injections, was ≈200–400 ng/g of each, inadequate for regulatory requirements. Solid phase extraction (SPE) attempted to pre-concentrate samples spiked with sulfamethazine by ≈20:1. From water, the limit of detection (LOD) was ≈2.7 ng/mL with LOQ ≈9 ng/mL using UV at 260 nm. The LOD for milk was 6.2 ng/mL, and LOQ was 20.1 ng/mL. A better pre-concentration step or a more sensitive detector such as MS–MS is required. Even with these inadequacies, SFC was shown to be a feasible, faster, “greener” alternative to HPLC for the separation of these drugs.

  相似文献   

9.
《Analytical letters》2012,45(1):113-126
Abstract

A sensitive liquid chromatography‐mass spectrometric (LC/MS) method for the quantification of ginsenoside Rg2 (Rg2) in rat plasma was developed after solid‐phase extraction (SPE). Chromatographic separation was achieved on a reversed‐phase Kromasil C18 column with the mobile phase of acetonitrile‐ammonium chloride (500 µM/L) and step gradient elution resulted in a total run time of about 9 min. The analytes were detected using electrospray negative ionization mass spectrometry in the selected ion monitoring (SIM) mode. A good linear relationship was obtained in the concentration range (5–2500 ng/mL) (r=0.9999). Limit of quantification (LOQ) was 5 ng/mL and the limit of detection (LOD) was 2 ng/mL using 100 µL plasma sample. Average recoveries ranged from 72.43–84.73% in plasma at the concentrations of 20, 200, and 2000 ng/mL. Intra‐ and interday coefficients of variation for the assay were 4.93–10.87% and 4.06–7.84%, respectively. The method was successfully applied to the analysis of ginsenoside Rg2 in rat plasma. The applicability of this assay was examined in a preliminary pharmacokinetic study of ginsenoside Rg2 in rats.  相似文献   

10.
Nine widely used veterinary sulfonamide drugs were baseline separated (R s ≥1.5) in just over 4 min using a 3 × 100 mm, 1.8 μm RX-Sil column, with 9.2 % methanol in carbon dioxide, at 110 bar and 30 °C, with direct UV detection at 260 nm using a 3 mm, 2 μL tapered flow cell. Pressure drop was only 172 bar. Optimization was difficult due to the similarity in structures. Small changes in modifier concentration, temperature and pressure, each tended to improve the resolution of some peak pairs but degraded the resolution of others. There were four critical pairs, each responding differently to changes in conditions. Optimization was performed by plotting resolution between pairs as a function of modifier concentration first, temperature second, and outlet pressure third. Retention time was then minimized by changing flow rate. The estimated limit of quantitation (LOQ, S/N >10), for direct injections, was ≈200–400 ng/g of each, inadequate for regulatory requirements. Solid phase extraction (SPE) attempted to pre-concentrate samples spiked with sulfamethazine by ≈20:1. From water, the limit of detection (LOD) was ≈2.7 ng/mL with LOQ ≈9 ng/mL using UV at 260 nm. The LOD for milk was 6.2 ng/mL, and LOQ was 20.1 ng/mL. A better pre-concentration step or a more sensitive detector such as MS–MS is required. Even with these inadequacies, SFC was shown to be a feasible, faster, “greener” alternative to HPLC for the separation of these drugs.  相似文献   

11.
A method employing ultra‐high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) for determination of eight components including ferulic acid, senkyunolide A, butylphthalide, ligustilide, butylidenephalide, senkyunolide I, senkyunolide H and levistolide A in Angelica sinensis was established. The separation was carried out using a Waters ACQUITY UHPLC BEH C18 column with gradient elution with 0.1% formic acid aqueous and acetonitrile at a flow rate of 0.4 mL/min. Good linearity was attained with R2 of 0.9983–0.9998 in wide concentration ranges. The method had limit of detection (LOD) and quantitation (LOQ) in the range of 0.42–6.98 ng/mL and 1.39–23.28 ng/mL, respectively. Intra‐ and inter‐day precisions varied with relative standard deviations (RSDs) from 0.33% to 0.88% and 0.37% to 1.04%, respectively. Moreover, the average recoveries were in a satisfactory range of 92.7%–102.1% with RSDs of less than 3.60%. Finally, the method was successfully applied to analyze 19 batches of A. sinensis samples grown in Min County, Gansu province, China, as well as that collected in other regions. The findings indicated that the established method is reliable and may thus be applied as a powerful tool for qualitative and quantitative analysis of components in A. sinensis, which has its implications in quality control of A. sinensis.  相似文献   

12.
A simple, sensitive, and reliable ultra-performance liquid chromatography (UPLC) method has been developed for simultaneous determination of 22 major constituents in modified xiaoyao san (MXS), a multiherbal formula. The chromatographic separation was performed on an ACQUITY UPLC BEH C18 column (150 x 2.1 mm, 1.7 microm, particle size), with an aqueous 0.5% acetic acid and acetonitrile mobile phase gradient. The method was validated for linearity (r2 >0.9937), intraday and interday precision (RSD <8.51%), recovery (91.18-107.73%), LOD (0.02-4.17 ng/mL), and LOQ (0.05-12.50 ng/mL). The established method was successfully applied to quantify the 22 marker compounds in MXS, which provided a useful basis of overall evaluation of the quality of MXS.  相似文献   

13.
Aripiprazole is an important antipsychotic drug. A simple, sensitive and rapid ultra‐performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC‐ESI‐MS/MS) method was developed and validated for the simultaneous quantification of this compound in rat plasma and brain homogenate. The analyte was extracted from rat plasma and brain homogenate using a weak cation exchange mixed‐mode resin‐based solid phase extraction. The compound was separated on an Agilent Eclipse Plus C18 (2.1 × 50 mm, 1.8 µm) column using a mobile phase of (A) 0.1% formic acid aqueous and (B) acetonitrile with gradient elution. The analyte was detected in positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, limit of quantitation (LOQ), precision, accuracy, recoveries and stability were determined. The LOQ was 0.5 ng/mL for aripiprazole in plasma and 1.5 ng/g in brain tissue. The MS response was linear over the concentration range 0.5–100 ng/mL for aripiprazole in plasma and 1.5–300 ng/g in brain tissue. The precision and accuracy for intra‐day and inter‐day were better than 14%. The relative and absolute recoveries were above 72% and the matrix effects were low. This validated method was successfully used to quantify the rat plasma and brain tissue concentrations of the analyte following chronic treatment with aripiprazole. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A rapid, novel and reliable UHPLC‐MS/MS method was developed and validated for simultaneous determination of cyclophosphamide (CP) and its dechloroethylated metabolite, 2‐dechloroethylcyclosphamide (2‐DCECP) in human plasma. The plasma samples were conducted by protein precipitation with 3‐fold acetonitrile, containing 0.1% formic acid. Mass spectrometric detection was performed using electrospray positive ionization with multiple reaction monitoring mode, using tinidazole as internal standard (IS). Chromatographic separation was performed on an Agilent poroshell 120 SB‐C18 column (2.1 × 75 mm, 2.7 µm) using gradient elution of acetonitrile and 0.1% formic acid at a flow rate of 0.5 mL/min, the total run time was 2.5 min. The limit of quantification (LOQ) was 20 ng/mL for both CP and 2‐DCECP. Accuracies and precisions were <15% at LOQ and below 10% at quality control concentration levels. This UHPLC‐MS/MS method was successfully applied for the estimation of CP and 2‐DCECP in human plasma, which was also useful for clinical toxicology studies and therapeutic drug monitoring of CP. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, specific and sensitive HPLC method has been developed for the determination of metoprolol in human plasma and urine. Separation of metoprolol and atenolol (internal standard) was achieved on an Ace C18 column (5 μm, 250 mm×4.6 mm id) using fluorescence detection with λex=276 nm and λem=296 nm. The mobile phase consists of methanol–water (50:50, v/v) containing 0.1% TFA. The analysis was performed in less than 10 min with a flow rate of 1 mL/min. The assay was linear over the concentration range of 3 – 200 and 5 – 300 ng/mL for plasma and urine, respectively. The LOD were 1.0 and 1.5 ng/mL for plasma and urine, respectively. The LOQ were 3.0 and 5.0 ng/mL for plasma and urine, respectively. The extraction recoveries were found to be 95.6 ± 1.53 and 96.4 ± 1.75% for plasma and urine, respectively. Also, the method was successfully applied to three patients with hypertension who had been given an oral tablet of 100 mg metoprolol.  相似文献   

16.
毕月玲  许桐  陈利琴 《色谱》2021,39(12):1306-1313
生物单胺包括儿茶酚胺类以及5-羟色胺等,在中枢神经系统中扮演着非常关键的角色,也是临床上诊断神经内分泌肿瘤疾病的重要生物标志物。由于这类单胺类物质的强化学极性导致传统吸附材料对其吸附效果不佳,从复杂生物样本中同时检测更多的生物单胺存在挑战性。该文建立了一种基于聚冠醚纳米纤维在线固相萃取检测尿液中3种儿茶酚胺(多巴胺、肾上腺素、去甲肾上腺素)和5-羟色胺的方法。采用静电纺丝法制备聚二苯并-18-冠-6醚-聚苯乙烯复合纳米纤维(PCE-PS),制成装填纤维的固相萃取(PFSPE)柱,再将PFSPE柱与HPLC进行在线联用。该在线PFSPE-HPLC方法采用双三元泵进行样品富集净化和分析,左泵连接PFSPE柱,进行样品富集净化;右泵连接分析柱进行样品分离检测。控制切换阀的切换,实现样品富集后洗脱至分析柱中分离检测。结果表明,在线PFSPE-HPLC检测尿液儿茶酚胺(多巴胺、肾上腺素、去甲肾上腺素)和5-羟色胺在1~200 ng/mL范围内有良好的线性关系,线性相关系数达0.996以上。3种儿茶酚胺和5-羟色胺的检出限(S/N=3)分别为1和2.5 ng/mL,定量限(S/N=10)分别为2.5和5 ng/mL。空白尿液和实际尿液加标回收率在83.5%~117.7%之间,日内精密度<10%。PCE-PS复合纳米纤维在多次使用后无明显变化,具有良好的稳定性,可重复使用达95次以上。在线PFSPE-HPLC方法能够集样品在线前处理与分析检测于一体,省时省力,实现分析过程的高度自动化。该方法成功应用于尿液中3种儿茶酚胺和5-羟色胺的检测,可以为临床上相关疾病检测诊断和研究提供有力的技术支持。  相似文献   

17.
A novel liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-Q-TOFMS) method was developed for the simultaneous determination of 23 amino acids and 7 biogenic amines in food samples. These analytes were pre-column derivatized with dansyl chloride and then separated in an Acquity column (1.7 μm; 2.1 mm × 100 mm). The separation of 31 compounds including an internal standard was achieved within 25 min at a flow rate of 0.2 mL/min. The method linearity for each amino acid and biogenic amine had a relatively wide range with r(2)>0.99. The intra- and inter-day precision, expressed as relative standard deviation (RSD), ranged from 1.1 to 4.6% and from 2.0 to 11.2%, respectively. The limit of detection was between 0.005 and 0.4 μg/mL. With a simple dilution, recoveries of around 80-120% were obtained for most of the compounds. No significant matrix effect was observed, and the developed method was successfully applied to the analysis of amino acids and biogenic amines in beer, cheese and sausage samples.  相似文献   

18.
A simple sample treatment procedure and sensitive liquid chromatography–tandem mass spectrometry method were developed for the simultaneous quantification of the concentrations of human immunodeficiency virus‐1 integrase strand transfer inhibitors – raltegravir, dolutegravir and elvitegravir – in human plasma and cerebrospinal fluid (CSF). Plasma and CSF samples (20 μL each) were deproteinized with acetonitrile. Raltegravir‐d3 was used as the internal standard. Chromatographic separation was achieved on an XBridge C18 column (50 × 2.1 mm i.d., particle size 3.5 μm) using acetonitrile–water (7:3, v/v) containing 0.1% formic acid as the mobile phase at a flow rate of 0.2 mL/min. The run time was 5 min. Calibration curves for all three drugs were linear in the range 5–1500 ng/mL for plasma and 1–200 ng/mL for CSF. The intra‐ and inter‐day precision and accuracy of all three drugs in plasma were coefficient of variation (CV) <12.9% and 100.0 ± 12.2%, respectively, while those in CSF were CV <12.3% and 100.0 ± 7.9%, respectively. Successful validation under the same LC–MS/MS conditions for both plasma and CSF indicates this analytical method is useful for monitoring the levels of these integrase strand transfer inhibitors in the management of treatment of HIV‐1 carriers.  相似文献   

19.
A rapid and sensitive high‐performance liquid chromatographic method was developed and validated for the simultaneous determination and quantification of atenolol, rosuvastatin, spirnolactone, glibenclamide and naproxen sodium in bulk drugs, pharmaceutical formulations and in human plasma in the presence of internal standard (flurbiprofen). Chromatograms were developed with methanol and water (80:20, v/v) solvent system on a Purospher start, C18 (5 μm, 250 × 4.6 mm) column and pH was adjusted to 3.40 with ortho‐phosphoric acid. Mobile phase was pumped with a flow rate of 0.90 mL/minute with 235 nm UV detection. Standard curves were linear over the concentration range 0.25‐30 μg/mL?1. The coefficients of variation (C.V.%), were < 3% and LOD and LOQ were <0.0154 & 0.06 for inter‐ and intra‐day, respectively. The method was applied to drug interaction studies of atenolol with rosuvastatin, spironolactone, glibenclamide and naproxen to illustrate the scope and application of the methods to manage four different therapeutic classes of drugs, as they are co‐administered.  相似文献   

20.
A rapid, simple, sensitive, gradient and reproducible, reverse‐phase high‐performance liquid chromatographic method was developed for the quantitative estimation of bioactive alkaloids, lysergol and chanoclavine in the seeds of Ipomoea muricata. The clavine alkaloid, lysergol, is a bioenhancer for the drugs and nutrients. The samples were analyzed by reverse‐phase chromatography on a Waters spherisorb ODS2 column (250 × 4.6 mm, i.d., 10 µm) using binary gradient elution with acetonitrile and 0.01 m phosphate buffer (NaH2PO4) containing 0.1% glacial acetic acid at a flow rate of 0.8 mL/min, a column temperature of 25 °C and UV detection at λ 254 nm. The limits of detection (LOD) and quantitation (LOQ) were 0.035 and 0.106 µg/mL for lysergol and 0.039 and 0.118 µg/mL for chanoclavine, respectively. Standard curves were linear in the range of 2–10 µg/mL (r > 99) for both analytes. Good results were achieved with respect to repeatability (RSD < 2%) and recovery (99.20–102.0). The method was validated for linearity, accuracy repeatability, LOQ and LOD. The method is simple, accurate and precise, and may be recommended for routine quality control analysis of I. muricata seed extracts containing these two clavine alkaloids (1, 2) as bioactive principles of the herb. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号