首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple, rapid and sensitive liquid chromatography/positive ion electro‐spray tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the quantification of fexofenadine with 100 μL human plasma employing glipizide as internal standard (IS). Protein precipitation was used in the sample preparation procedure. Chromatographic separation was achieved on a reversed‐phase C18 column (5 μm, 100 × 2.1 mm) with methanol : buffer (containing 10 mmol/L ammonium acetate and 0.1% formic acid; 70 : 30, v/v) as mobile phase. The total chromatographic runtime was approximately 3.0 min with retention time for fexofenadine and IS at approximately 1.9 and 2.1 min, respectively. Detection of fexofenadine and IS was achieved by LC‐MS/MS in positive ion mode using 502.1 → 466.2 and 446.0 → 321.1 transitions, respectively. The method was proved to be accurate and precise at linearity range of 1–600 ng/mL with a correlation coefficient (r) of ≥0.9976. The validated method was applied to a pharmacokinetic study in human volunteers following oral administration of 60 or 120 mg fexofenadine formulations, successfully. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Three liquid chromatography–tandem mass spectrometry (LC‐MS/MS) methods were respectively developed and validated for the simultaneous or independent determination of taurine and edaravone in rat plasma using 3‐methyl‐1‐p‐tolyl‐5‐pyrazolone and sulfanilic acid as the internal standards (IS). Chromatographic separations were achieved on an Agilent Zorbax SB‐Aq (100 × 2.1 mm, 3.5 µm) column. Gradient 0.03% formic acid–methanol, isocratic 0.1% formic acid–methanol (90:10) and 0.02% formic acid–methanol (40:60) were respectively selected as the mobile phase for the simultaneous determination of two analytes, taurine or edaravone alone. The MS acquisition was performed in multiple reaction monitoring mode with a positive and negative electrospray ionization source. The mass transitions monitored were m/z [M + H]+ 175.1 → 133.0 and [M + H]+ 189.2 → 147.0 for edaravone and its IS, m/z [M ? H]? 124.1 → 80.0 and [M ? H]? 172.0 → 80.0 for taurine and its IS, respectively. The validated methods were successfully applied to study the pharmacokinetic interaction of taurine and edaravone in rats after independent intravenous administration and co‐administration with a single dose. Our collective results showed that there were no significant alterations on the main pharmacokinetic parameters (area under concentration–time curve, mean residence time, half‐life and clearance) of taurine and edaravone, implying that the proposed combination therapy was pharmacologically feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This study firstly describes the development of an accurate and sensitive high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) assay for the quantification of Taiwanin E methyl ether (TEME) in rat plasma. The assay involved a simple liquid–liquid extraction step with ethyl acetate and a gradient elution using a mobile phase consisting of water containing 0.1% formic acid and acetonitrile containing 0.1% formic acid. Chromatographic separation was successfully achieved on an Agilent Zorbax‐C18 column (2.1 × 50 mm, 3.5 µm) with a flow rate of 0.40 mL/min. The multiple reaction monitoring was based on the transitions of m/z = 379.1 → 320.1 for TEME and 386.1 → 122.0 for buspirone (internal standard). The assay was validated to demonstrate the specificity, linearity, recovery, accuracy, precision and stability. The lower limit of quantification was 0.50 ng/mL in 50 μL of rat plasma. The developed and validated method was successfully applied to the quantification and pharmacokinetic study of TEME in rats after intravenous and oral administration of 1.45 mg/kg TEME. The oral absolute bioavailability of TEME was estimated to be 5.85 ± 1.41% with an elimination half‐life value of 2.61 ± 0.55 h, suggesting its poor absorption and/or strong metabolism in vivo. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid and sensitive LC‐MS/MS method for the quantification of fenofibric acid in rat plasma was developed and validated. Plasma samples were prepared by liquid–liquid extraction with a mixture of N‐hexane–dichloromethane–isopropanol (100:50:5, v/v/v). Isocratic chromatographic separation was performed on a reversed‐phase Discovery C18 column (2.1 × 50 mm, 5 µm). The mobile phase was methanol–water–formic (75:25:0.25, v/v/v). Detection of fenofibric acid and the internal standard (IS) diclofenac acid was achieved by ESI MS/MS in the negative ion mode using m/z 317 → m/z 213 and m/z 294 → m/z 250 transitions, respectively. The method was linear from 0.005 to 1.250 µg/mL when 100 μL plasma was analyzed. The lower limit of quantification was 0.005 µg/mL. The intra‐ and inter‐day precision values were below 8.2%, and accuracy ranged from ?0.9 to 2.1% in all quality control samples. The recovery was 90.3–94.7% and 83.3% for fenofibric acid and IS, respectively. Total run time for each sample analysis was 2.5 min. The validated method was successfully applied to a pharmacokinetic study in six rats after oral administration of fenofibrate, the ester prodrug of fenofibric acid (equivalent to fenofibric acid 5 mg/kg). The method permits laboratory scientists with access to the appropriate instrumentation to perform rapid fenofibric acid determination. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid and sensitive liquid chromatography–tandem mass spectrometric method (LC‐MS/MS) for the determination of bromotetrandrine in rat plasma has been developed and applied to pharmacokinetic study in Sprague–Dawley (SD) rats after a single oral administration. Sample preparation involves a liquid–liquid extraction with n‐hexane–dichlormethane (65:35, containing 1% 2‐propanol isopropyl alcohol, v/v). Bromotetrandrine and brodimoprim (internal standard, IS) were well separated by LC with a Dikma C18 column using methanol–ammonium formate aqueous solution (20 mm ) containing 0.5% formic acid (60:40, v/v) as mobile phase. Detection was performed on a triple quadrupole mass spectrometer in multiple reaction monitoring mode. The ionization was optimized using ESI(+) and selectivity was achieved using MS/MS analysis, m/z 703.0 → 461.0 and m/z 339.0 → 281.0 for bromotetrandrine and IS, respectively. The present method exhibited good linearity over the concentration range of 20–5000 ng/mL for bromotetrandrine in rat plasma with a lower limit of quantification of 20 ng/mL. The intra‐ and inter‐day precisions were 2.8–7.5% and 3.2–8.1%, and the intra‐ and inter‐day accuracy ranged from ?4.8 to 8.2% and ?5.6 to 6.2%, respectively. The method was successfully applied to a pharmacokinetic study after a single oral administration to SD rats with bromotetrandrine of 50 mg/kg. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive, accurate, rapid and robust LC‐MS‐MS method for the quantification of aucubin, a major bioactive constituent of Aucuba japonica, Eucommia ulmoides and Plantago asiatica, was established and validated in rat plasma. Plasma samples were simply precipitated by adding methanol and the supernatant was chromatographed by a Diamonsil® C18(2) column with the mobile phase comprising a mixture of 10 mm ammonium acetate in methanol and that in water with the ratio of 50:50 (v/v). Quantification of aucubin was performed by mass spectrometry in the multiple‐reaction monitoring mode with positive atmospheric ionization at m/z 364 → 149 for aucubin, and m/z 380 → 165 for catalpol (IS), respectively. The retention time was 2.47 and 2.44 min for aucubin and the IS, respectively. The calibration curve (10.0–30,000 ng/mL) was linear (r2 > 0.99) and the lower limit of quantification was 10.0 ng/mL in the rat plasma sample. The method showed satisfactory results such as sensitivity, specificity, precision, accuracy, recovery, freeze–thaw and long‐term stability. This simple LC‐MS method was successfully applied in a pharmacokinetic study carried out in Sprague–Dawley rats after oral administration of aucubin at a single dose of 50 mg/kg. Herein the pharmacokinetic study of aucubin is reported for the first time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A highly selective and specific LC‐MS/MS method was developed and validated for the determination of wilforine in rat plasma. The analyte was separated from plasma matrix by using methyl tertiary butyl ether liquid–liquid extraction with bulleyacinitine A as internal standard (IS). The analysis was carried out on a Sepax GP‐Phenyl column using a mixture of methanol and 10 mmol/L ammonium formate buffer solution containing 0.1% formic acid (75:25, v/v) as the mobile phase pumped at a flow rate of 1.0 mL/min. The detection was operated using a triple‐quadrupole mass spectrometer in multiple selected reaction monitoring with the parent‐to‐product quantifier transitions [M + H]+ m/z 867.6 →206.0 for wilforine and 664.1 →584.1 for IS. The main advantage of this method was the high sensitivity (a lower limit of quantification of 0.02 ng/mL) and the small amount of sample (0.1 mL plasma per sample). The method was fully validated to be accurate and precise with a linear range of 0.02–100 ng/mL, and successfully applied to a bioavailability study of wilforine in rats after intravenous and oral administration. The oral absolute bioavailability of wilforine in rats was estimated to be 84%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive, specific and simple LC‐MS/MS method was developed for the identification and quantification of bivalirudin in human plasma using diazepam as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under multiple‐reaction monitoring mode using electrospray ionization. The sample preparation consisted of an easy protein precipitation sample pretreatment with methanol. Chromatographic separation was achieved on a Zorbax Eclipse plus C18 100 × 2.1 mm column with a mobile phase of water–methanol–0.1% formic acid. The analytes were detected with a triple quadrupole Quantum Access with positive ionization. Ions monitored in the multiple‐reaction monitoring mode were m/z 1091 → 650 for bivalirudin (at 2.70 min) and m/z 285 → 193 for diazepam (at 3.85 min). The developed method was validated in human plasma with a lower limit of quantitation of 20 µg/L for bivalirudin. A linear response function was established for the range of concentrations 20–10,000 µg/L (r > 0.998) for bivalirudin. The intra‐ and inter‐day precision values for bivalirudin met the acceptance criteria as per US Food and Drug Administration guidelines. Bivalirudin was stable in the battery of stability studies, viz. bench‐top, freeze–thaw cycles and long‐term stability. The developed assay method was applied to an intravenous administration study in humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
An LC‐MS/MS method was developed for the simultaneous determination of vitexin and isovitexin in rat plasma, using puerarin as the internal standard (IS). Plasma samples extracted with protein precipitation procedure were separated on a Diamonsil® C18 column (150 × 4.6 mm, 5 µm) with a mobile phase composed of methanol and 0.1% formic acid (45:55, v/v). The detection was accomplished by multiple reaction monitoring mode in positive electrospray ionization source. The optimized mass transition ion‐pairs for quantitation were m/z 431.2 → 311.1 for vitexin and isovitexin, and m/z 415.1 → 295.1 for IS. The total run time was 7.5 min for each injection. The calibration curves were linear (r2 > 0.99) over the investigated concentration range (2.00–2000 ng/mL) and the lower limits of quantification were 2.00 ng/mL in rat plasma sample. The intra‐ and inter‐day relative standard deviations were no more than 14.9% and the relative errors were within the range of ?3.2–2.1%. The extraction recoveries for both compounds were between 89.3 and 97.3%. The robust LC‐MS/MS method was further applied in the pharmacokinetic study in Sprague–Dawley rats after oral administration of Santalum album L. leaves extract at a dose of 116 mg/kg. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A highly sensitive, accurate and robust LC‐MS/MS method was developed and validated for determination of nimorazole (NMZ) in rat plasma using metronidazole (MNZ) as internal standard (IS). The analyte and IS were extracted from plasma by precipitating protein with acetonitrile and were chromatographed using an Agilent Poroshell 120, EC‐C18 column. The mobile phase was composed of a mixture of acetonitrile and 0.1 % formic acid (85:15 v/v). The total run time was 1.5 min and injection volume was 5 μL. Multiple reaction monitoring mode using the transitions of m/z 227.1 → m/z 114.0 for MNZ and m/z 172.10 → m/z 128.1 for IS were monitored on a triple quadrupole mass spectrometer, operating in positive ion mode. The calibration curve was linear in the range of 0.25–200 ng/mL (r2 > 0.9996) and the lower limit of quantification was 0.25 ng/mL in the rat plasma samples. Recoveries of NMZ ranged between 88.05 and 95.25%. The precision (intra‐day and inter‐day) and accuracy of the quality control samples were 1.25–8.20% and ?2.50–3.10, respectively. The analyte and IS were found to be stable during all sample storage and analysis procedures. The LC‐MS/MS method described here was validated and successfully applied to pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
A simple and sensitive analytical method using liquid chromatography–tandem mass spectrometry (LC/MS/MS) for determination of acetylsalicylic acid (aspirin, ASA) and its major metabolite, salicylic acid (SA), in animal plasma has been developed and validated. Both ASA and SA in plasma samples containing potassium fluoride were extracted using acetonitrile (protein precipitation) with 0.1% formic acid in it. 6‐Methoxysalicylic acid was used as the internal standard (IS). The compounds were separated on a reversed‐phase column. The multiple reaction monitoring mode was used with ion transitions of m/z 178.9 → 136.8, 137.0 → 93.0 and 167.0 → 123.0 for ASA, SA and IS, respectively. The lower limits of quantification for ASA and SA were 3 and 30 ng/mL, respectively. The developed method was successfully applied for the evaluation of pharmacokinetics of ASA and SA after p.o. and i.v. administration of 1 mg/kg to rats. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A sensitive and rapid LC‐MS/MS method was developed and validated for the determination of kadsurenone in rat plasma using lysionotin as the internal standard (IS). The analytes were extracted from rat plasma with acetonitrile and separated on a SB‐C18 column (50 × 2.1 mm, i.d.; 1.8 µm) at 30 °C. Elution was achieved with a mobile phase consisting of methanol–water–formic acid (65:35:0.1, v/v/v) at a flow rate of 0.30 mL/min. Detection and quantification for analytes were performed by mass spectrometry in the multiple reaction monitoring mode with positive electrospray ionization m/z at 357.1 → 178.1 for kadsurenone, and m/z 345.1 → 315.1 for IS. Calibration curves were linear over a concentration range of 4.88–1464 ng/mL with a lower limit of quantification of 4.88 ng/mL. The intra‐ and inter‐day accuracies and precisions were <8.9%. The LC‐MS/MS assay was successfully applied for oral pharmacokinetic evaluation of kadsurenone using the rat as an animal model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A highly sensitive and rapid ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) at a flow rate of 0.4 mL/min, using 0.1% formic acid–acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1–1000 ng/mL. The intra‐ and inter‐day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract.  相似文献   

15.
A rapid, simple, selective and sensitive LC‐MS/MS method was developed for the determination of curculigoside in rat plasma. The analytical procedure involves extraction of curculigoside and syringin (internal standard, IS) from rat plasma with a one‐step extraction method by protein precipitation. The chromatographic resolution was performed on an Agilent XDB‐C18 column (4.6 × 50 mm, 5 µm) using an isocratic mobile phase of methanol with 0.1% formic acid and H2O with 0.1% formic acid (45:55, v/v) at a flow rate of 0.35 mL/min with a total run time of 2.0 min. The assay was achieved under the multiple‐reaction monitoring mode using positive electrospray ionization. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The calibration curve was linear over 4.00–4000 ng/mL (R = 0.9984) for curculigoside with a lower limit of quantification of 4.00 ng/mL in rat plasma. The intra‐ and inter‐day precisions and accuracies were 3.5–4.6 and 0.7–9.1%, in rat plasma, respectively. The validated LC‐MS/MS method was successfully applied to a pharmacokinetic study of curculigoside in rats after a single intravenous and oral administration of 3.2 and 32 mg/kg. The absolute bioavailability of curculigoside after oral administration was 1.27%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The aim of this study was to improve and validate a more stable and less time‐consuming method based on liquid chromatography and tandem mass spectrometry (LC‐ MS/MS) for the quantitative measurement of imatinib and its metabolite N‐ demethyl‐imatinib (NDI) in human plasma. Separation of analytes was performed on a Waters XTerra RP18 column (50 × 2.1 mm i.d., 3.5 μm) with a mobile phase consisting of methanol–acetonitrile–water (65:20:15, v /v/v) with 0.05% formic acid at a flow‐rate of 0.2 mL/min. The Quattro MicroTM triple quadruple mass spectrometer was operated in the multiple‐reaction‐monitoring mode via positive electrospray ionization interface using the transitions m /z 494.0 → 394.0 for imatinib, m /z 479.6 → 394.0 for NDI and m /z 488.2 → 394.0 for IS. The method was linear over 0.01–10 μg/mL for imatinib and NDI. The intra‐ and inter‐day precisions were all <15% in terms of relative standard deviation, and the accuracy was within ±15% in terms of relative error for both imatinib and NDI. The lower limit of quantification was identifiable and reproducible at 10 ng/mL. The method was sensitive, specific and less time‐consuming and it was successfully applied in gastrointestinal stromal tumor patients treated with imatinib.  相似文献   

17.
A rapid, selective and sensitive liquid chromatography/tandem mass spectrometry (LC‐MS/MS) method was developed and validated for determining bencycloquidium bromide (BCQB) in beagle dog plasma. The plasma sample was deproteinized with methanol which contained l‐ethyl‐bencycloquidium bromide as internal standard, and supernantant was assayed by LC‐MS/MS. The chromatographic separation was performed on a Phenomenex C18 column (100 × 2.0 mm, i.d., 3.0 μm) with a gradient programme mobile phase consisting of methanol and ammonium acetate (5 mm) containing 0.15% acetic acid and at a flow rate of 0.3 mL/min. Electrospray ionization in positive ion mode and selective reaction monitoring was used for the quantification of BCQB with a monitored transitions m/z 330.2 → 142.1 for BCQB and m/z 344.2 → 126.2 for IS. Validation results indicated that the lower limit of quantification was 0.05 ng/mL and the assay exhibited a linear range of 0.05–10.0 ng/mL and gave a correlation coefficient of 0.9998. The intra‐ and inter‐run precisions of the assay were 1.7–4.6 and 3.2–15.6%, respectively, and the intra‐ and inter‐day accuracies were ?8.8 to 1.1 and ?5.0 to 4.6%, respectively. The developed method was applied for the pharmacokinetic study of BCQB in beagle dogs following a single intranasal dose. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A sensitive, rapid and specific LC‐MS‐MS method was established and validated for determination of methyl kulonate, a major bioactive constituent isolated from Meliae Cortex, in rat plasma. Plasma samples were treated by precipitating protein with methanol and were chromatographed using a Capcell Pak C18 column (100 × 4.6 mm, 5 µm) with the mobile phase comprising a mixture of methanol, 10 m m ammonium formate and formic acid (95:5:0.1, v/v/v). Detection and quantification were performed by mass spectrometry in the multiple reaction monitoring mode with positive atmospheric ionization at m/z 467 → 311 for methyl kulonate, and m/z 469 → 451 for dubione B (internal standard), respectively. A good linear response was observed over the concentration range 1.00–500 ng/mL with the lower limit of quantification 1.00 ng/mL in rat plasma. The method also afforded satisfactory results base on sensitivity, specificity, precision, accuracy, recovery, freeze–thaw and long‐time stability. The validated method was successfully applied to determine the pharmacokinetic properties of methyl kulonate in rats after oral administration at dose of 100 mg/kg. This pharmacokinetic study of methyl kulonate is reported here for the first time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Dendrobine, considered as the major active alkaloid compound, has been used for the quality control and discrimination of Dendrobium which is documented in the Chinese Pharmacopoeia. In this work, a sensitive and simple ultra‐performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method for determination of dendrobine in rat plasma is developed. After addition of caulophyline as an internal standard (IS), protein precipitation by acetonitrile–methanol (9:1, v/v) was used to prepare samples. Chromatographic separation was achieved on a UPLC BEH C18 (2.1 ×100 mm, 1.7 µm) column with acetonitrile and 0.1% formic acid as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reaction monitoring mode was used for quantification using target fragment ions m/z 264.2 → 70.0 for dendrobine and m/z 205.1 → 58.0 for IS. Calibration plots were linear throughout the range 2–1000 ng/mL for dendrobine in rat plasma. The RSDs of intra‐day and inter‐day precision were both <13%. The accuracy of the method was between 95.4 and 103.9%. The method was successfully applied to pharmacokinetic study of dendrobine after intravenous administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive and reproducible liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous determination of linarin, naringenin and formononetin in rat plasma after addition of sulfamethoxazole as the internal standard (IS). Separation was carried out on a Diamonsil C18 column (150 × 4.6 mm, 5 µm) with liner gradient elution using methanol (A) and 0.5‰ formic acid aqueous solution (B). Detection was performed on a triple‐quadrupole linear ion trap mass spectrometer with the negative ion electrospray ionization in multiple‐reaction monitoring (MRM) mode. The MRM transitions were m/z 591.2 → 283.2, 271.0 → 150.9, 266.9 → 252.0 and 252.0 → 155.9 for linarin, naringenin, formononetin and IS, respectively. All analytes showed good linearity within the concentration range (r > 0.9973). The lower limits of quantitation of linarin, naringenin and formononetin were 0.64, 1.07 and 1.04 ng/mL, respectively. Intra‐day and inter‐day precisions of the investigated components exhibited an RSD within 9.96%, and the accuracy (relative error) ranged from ?11.25 to 9.38% at all quality control levels. The developed method was successfully applied to a pharmacokinetic study of linarin, naringenin and formononetin in rats after oral administration of Bushen Guchi Pill. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号