首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A three-dimensional unsteady theoretical model of droplet spreading process on an inclined surface is developed and numerically analyzed to investigate the droplet spreading dynamics via the lattice Boltzmann simulation. The contact line motion and morphology evolution for the droplet spreading on an inclined surface, which are, respectively, represented by the advancing/receding spreading factor and droplet wetted length, are evaluated and analyzed. The effects of surface wettability and inclination on the droplet spreading behaviors are examined. The results indicate that, dominated by gravity and capillarity, the droplet experiences a complex asymmetric deformation and sliding motion after the droplet comes into contact with the inclined surfaces. The droplet firstly deforms near the solid surface and mainly exhibits a radial expansion flow in the start-up stage. An evident sliding-down motion along the inclination is observed in the middle stage. And the surface-tension-driven retraction occurs during the retract stage. Increases in inclination angle and equilibrium contact angle lead to a faster droplet motion and a smaller wetted area. In addition, increases in equilibrium contact angle lead to a shorter duration time of the middle stage and an earlier entry into the retract stage.  相似文献   

2.
固体壁面由于表面特殊结构和材料属性,时常表现出对交界面上水体的吸附作用,而这一特征对微小水体作用尤为明显。本文提出了一种湿润性固壁边界条件的计算方法,即假设壁面粒子的亲水性以及毛细吸附作用统一表现为对支持域内流体粒子的吸附力。基于光滑粒子流体动力学(SPH)方法,模拟了静态液滴在不同湿润性壁面上的变形至稳定过程。模拟了液滴撞击疏水壁面的过程,将液滴的运动过程分为碰撞、铺展、回缩和回弹四个阶段,分析各阶段壁面受力分布情况。研究表明:根据模拟液滴静态接触角的变化特点,本文湿润性固壁边界条件可以较好的反映出壁面湿润性;液滴撞击输水表面的模拟数据与试验结果趋势上吻合良好;壁面压力波伴随着液滴的铺展和回缩传播并衰减;只有在回弹后期液滴即将脱离壁面时壁面拉力起主导作用,其余各时刻壁面均以压力为主。  相似文献   

3.
固体壁面由于表面特殊结构和材料属性,时常表现出对交界面上水体的吸附作用,而这一特征对微小水体作用尤为明显。本文提出了一种湿润性固壁边界条件的计算方法,即假设壁面粒子的亲水性以及毛细吸附作用统一表现为对支持域内流体粒子的吸附力。基于光滑粒子流体动力学(SPH)方法,模拟了静态液滴在不同湿润性壁面上的变形至稳定过程。模拟了液滴撞击疏水壁面的过程,将液滴的运动过程分为碰撞、铺展、回缩和回弹四个阶段,分析各阶段壁面受力分布情况。研究表明:根据模拟液滴静态接触角的变化特点,本文湿润性固壁边界条件可以较好的反映出壁面湿润性;液滴撞击输水表面的模拟数据与试验结果趋势上吻合良好;壁面压力波伴随着液滴的铺展和回缩传播并衰减;只有在回弹后期液滴即将脱离壁面时壁面拉力起主导作用,其余各时刻壁面均以压力为主。  相似文献   

4.
We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally validated, finite element method-based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid–gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simulations are compared with the respective measurements available in the literature. Comparisons show good agreement of numerical data with measurements, and the computational model is able to reconstruct the bouncing and non-bouncing of the droplet as seen in the measurements. The simulated internal flow helps to understand the impact dynamics as well as the interplay of the associated energies during the bouncing and non-bouncing. A regime map is proposed to predict the bouncing and non-bouncing on a superhydrophobic surface with an equilibrium contact angle of 155°, using data of 86 simulations and the measurements available in the literature. We discuss the validity of the computational model for the wetting transition from Cassie to Wenzel state on micro- and nanostructured superhydrophobic surfaces. We demonstrate that the numerical simulation can serve as an important tool to quantify the internal flow, if the simulated droplet shapes match the respective measurements utilizing high-speed photography.  相似文献   

5.
通过建立液滴撞击固体平壁的静态铺展力学平衡的数学模型,从理论上得到了静态铺展半径与液滴物性参数、以及液滴与固体壁面接触角之间关系的数学表达式,将理论结果与数值模拟的结果进行了比较,两者吻合较好.比较了不同条件下液滴的静态铺展半径的变化规律,分别得到了液滴密度、体积、表面张力和接触角等因素对液滴静态铺展半径的影响规律.  相似文献   

6.
陈石  陶英  沈胜强  李德伟 《力学学报》2014,46(3):329-335
通过建立液滴撞击固体平壁的静态铺展力学平衡的数学模型,从理论上得到了静态铺展半径与液滴物性参数、以及液滴与固体壁面接触角之间关系的数学表达式,将理论结果与数值模拟的结果进行了比较,两者吻合较好.比较了不同条件下液滴的静态铺展半径的变化规律,分别得到了液滴密度、体积、表面张力和接触角等因素对液滴静态铺展半径的影响规律.   相似文献   

7.
Forced oscillations of a cylindrical droplet of an inviscid liquid surrounded by another liquid and bounded in the axial direction by rigid planes are investigated. The system is affected by vibrations whose force is directed parallel to the axis of symmetry of the droplet. The velocity of motion of the contact line is proportional to the deviation of the contact angle from the value at which the droplet is in equilibrium. Linear and nonlinear oscillations are considered. The conditions of the occurrence of resonance are determined.  相似文献   

8.
基于介观模型的多组分伪势格子Boltzmann方法,模拟了倾斜壁面浸润性梯度驱动液滴的运动过程,研究了壁面浸润性梯度、壁面倾斜角度对液滴运动过程的影响.结果表明,对于一定倾斜角度的壁面,当壁面上浸润性梯度足够大时,液滴能够克服重力的作用实现“爬坡”;液滴在运动过程中,其前进及后退接触角与当地静态接触角间存在差值;增大壁面浸润性梯度时,液滴能够获得更快的加速,并且前进及后退接触角与当地静态接触角之间的差值也随之增大;增大壁面倾斜角度时,液滴的运动受到阻碍,前进及后退接触角与当地静态接触角的差值小幅减小.  相似文献   

9.
Three-dimensional computations on the basis of the index-function lattice Boltzmann method are performed to simulate the process of multiple droplets impinging and coalescing into a line pattern on a solid substrate. The employed calculation model is validated by theoretical calculated values and experimental data from the literature. The influences of the equilibrium contact angle, droplet spacing and impinging velocity on the droplets impingement and coalescence behaviours are investigated. Numerical results demonstrate the width of the formed line depends significantly on the equilibrium contact angle and droplet spacing. The droplet spacing plays a significant role in controlling the coalescence moment of multiple droplets. The resolution of the printed pattern can be slightly increased with increase in impinging velocity.  相似文献   

10.
通过固液界面摩擦力测试装置研究了微液滴在PDMS软基体表面运动时的动态摩擦学行为,并对微液滴体积、滑动速度及软基体力学性能对固液界面动态摩擦行为的影响进行了分析. 结果表明:微液滴在软基体表面运动时表现出最大静摩擦力和动态摩擦力. 最大静摩擦力与微液滴黏度和速度梯度呈正比,动态摩擦力与微液滴体积、滑动速度和基体力学性能有关. 随着微液滴体积的增加,三相接触线长度增加,动态摩擦力增加;随着相对滑动速度增加,三相接触线长度及接触角滞后增加,动态摩擦力增加;随着软基体弹性模量降低,固液界面黏附力增加,固液界面运动能量耗散增加,动态摩擦力增加. 研究结果可为PDMS软基体表面微液滴的精确驱动和运动参数优化提供理论指导,也可进一步丰富固液界面摩擦理论.   相似文献   

11.
The natural oscillations of a cylindrical droplet of an inviscid liquid surrounded by a different liquid and bounded in the axial direction by solid planes are studied. The motion of the contact line is described using an effective boundary condition. The dependence of the frequency and damping ratio on the capillary parameter is found. It is shown that the fundamental frequency of the translation mode vanishes beginning from a certain value of the capillary parameter. Depending on the ratio of the radial and axial dimensions of the droplet, the fundamental frequency of the axisymmetric mode and modes higher than the translation mode can vanish in a certain range of the capillary parameter. This dependence of the natural oscillation frequencies on the problem parameters allows one to determine the capillary parameter. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 78–86, September–October, 2007.  相似文献   

12.
Droplet impact on hydrophobic and superhydrophobic solid surfaces finds numerous applications, while the wide range of the parameters affecting its outcome necessitate a thorough study to reveal the underlying physics. Specific applications are related to the drop impact upon curved surfaces, such as micro-encapsulation in fluidized beds. Three-dimensional numerical simulations by applying Level-Set Method have been performed to investigate the water droplet impact on curved and flat hydrophobic and superhydrophobic substrates. Parameters such as the impact Weber number, the surface curvature and the equilibrium contact angle have been varied in order to assess their effects on the dynamics of the impact process. After providing a strong validation, it is found that impact on spherical surfaces generally presents a higher area of liquid to be in contact with the substrate with respect to the case of flat surfaces, when all other impact conditions are the same.  相似文献   

13.
Extensive application of the multiphase lattice Boltzmann model to realistic fluid flows is often restricted by the numerical instabilities induced at high liquid-to-gas density ratios, and at low viscosities. In this paper, a three-dimensional multi-relaxation time (MRT) lattice Boltzmann model with an improved forcing scheme is reported for simulating multiphase flows at high liquid-to-gas density ratios and relatively high Reynolds numbers. The model is based on a recently presented model in the literature. Firstly, the MRT multiphase model is evaluated by verifying Laplace’s law and achieving thermodynamic consistency for a static droplet. Then, a relationship between the fluid–solid interaction potential parameter and contact angle is investigated. Finally, the improved three-dimensional MRT Lattice Boltzmann model is employed in the simulation of the impingement of a liquid droplet onto a flat surface for a range of Weber and Reynolds numbers. The dynamics of the droplet spreading is reproduced and the predicted maximum spread factor is in good agreement with experimental data published in the literature.  相似文献   

14.
Droplet motion/departure, which is governed by external force acceleration coefficient, droplet radius and surface wettability on solid surfaces under external forces such as gravitational force, play a significant role in characterizing condensation heat transfer, especially when high fractional non-condensable gases (NCG) present. However, due to the challenge in visualizing the vapor/steam velocity field imposed by droplet motion/departure, the detailed mechanism of droplet motion/departure on condensing surfaces has not been completely investigated experimentally. In this study, droplet motion/departures on solid surfaces under external forces and their interactions with steam flow are simulated using two dimensional (2D) multiphase lattice Boltzmann method (LBM). Large external force acceleration coefficient, droplet radius and contact angle, lead to large droplet deformation and high motion/departure velocity, which significantly shortens the droplet residual time on the solid surface. Our simulation shows that steam vortices (lateral velocity) induced by droplet motion/departure can greatly disturb the vapor flow and would be intensified by increasing external force acceleration coefficient, droplet radius, and contact angle. In addition, the location of vortex center shifts in the ascending direction with increase of these factors. The average lateral velocities induced by droplet motion/departure at various conditions are obtained. The mass transfer resistance is substantially reduced owing to the droplet motion/departure, leading to an enhanced heat flux. The experimental results are compared to validate the influence of droplet motion/departure on condensation heat transfer performance, especially for steam–air mixture with the presence of high fractional NCG.  相似文献   

15.
Chen  X. X.  Shi  Z. Y.  Wang  G. Q.  Zheng  E. H.  Tang  P. B.  Xu  J. R. 《Fluid Dynamics》2022,56(1):S19-S33

The impact behavior of individual biomass oil droplets was investigated on solid surfaces having different structures (flat, cylindrical, and spherical) using the high-speed video technique. This makes it possible to compare the evolution of the droplet impact on various surface structures. The impact behaviors of retraction–oscillation and adhesion are analyzed for different hydrophobic surfaces. The influence of the Weber number (We), the surface structure, and the surface curvature is further examined by focusing on the retraction and stable adhesion (thickness, adhesion, and contact angle) for different biomass oil droplets. The results show that the retraction factor gradually increases as We increases to some critical value, beyond which the increase rate slows down or the retraction factor begins to decrease. The largest retraction factor is observed on the flat surface and the smallest one appears on the spherical surface. The adhesion thickness of the liquid film oscillates periodically over time, and its oscillation amplitude gradually decreases with a constant frequency, which is smaller for the more hydrophobic surfaces. The curvatures of the cylinder and sphere have little influence on the stable adhesion behavior. For the different droplet types, the adhesion diameter on the flat surface gradually increases as We rises, whereas the adhesion thickness gradually decreases with increase in We. These results are helpful for understanding the impact behaviors of biomass oil droplets with high viscosity and small surface tension on solid surfaces.

  相似文献   

16.
Although the contact angle at equilibrium has a well understood theory for the case of flat homogeneous solid surfaces, the displacement of the contact line is still not well understood. We propose to introduce in the dynamics of the contact line a mobility relation between the deviation of the contact angle out of its equilibrium value and the speed of the line on the solid. When the line slides on the solid thanks to an evaporation/condensation process, this introduces a dynamical Arrhenius factor that may be sufficiently small to make the mobility of the contact line the limiting factor of the dynamics in many physical situations. Then, the shape of the liquid/vapor interface will be in quasi equilibrium giving a contact angle that will define ultimately the speed of the contact line.  相似文献   

17.
Effects of oxidation and surface roughness on contact angle   总被引:1,自引:0,他引:1  
Contact angle is known to be a parameter that effects boiling. This study was undertaken to measure contact angle of high and low surface tension fluids on copper and aluminum surfaces.Data were taken for polished, oxidized, and rough surfaces. A simple, yet fairly accurate method of measuring the static equilibrium contact angle of a solid/liquid interface is presented. The principles of a line light source and tilting plate were modified and then combined in the design of this apparatus. The angles obtained and their variation with the solid surface properties were in good agreement with previously published data. The contact angle of distilled water o of the organic fluids and refrigerants tested were in the range of 2–5°. Roughness and oxidation reduce the contact angle. If the depth of the roughness is less than 0.5 μm contact angle. The apparatus is fairly simple in construction, is inexpensive, and has good reproductibity. The measured angles were then compared to those measured with the sessile drop method.  相似文献   

18.
A weakly nonlocal phase-field model is used to define the surface tension in liquid binary mixtures in terms of the composition gradient in the interfacial region so that, at equilibrium, it depends linearly on the characteristic length that defines the interfacial width. Contrary to previous works suggesting that the surface tension in a phase-field model is fixed, we define the surface tension for a curved interface and far-from-equilibrium conditions as the integral of the free energy excess (i.e., above the thermodynamic component of the free energy) across the interface profile in a direction parallel to the composition gradient. Consequently, the nonequilibrium surface tension can be widely different from its equilibrium value under dynamic conditions, while it reduces to its thermodynamic value for a flat interface at local equilibrium. In nonequilibrium conditions, the surface tension changes with time: during mixing, it decreases as the inverse square root of time, while in the linear regime of spinodal decomposition, it increases exponentially to its equilibrium value, as nonlinear effects saturate the exponential growth. In addition, since temperature gradients modify the steepness of the concentration profile in the interfacial region, they induce gradients in the nonequilibrium surface tension, leading to the Marangoni thermocapillary migration of an isolated drop. Similarly, Marangoni stresses are induced in a composition gradient, leading to diffusiophoresis. We also review results on the nonequilibrium surface tension for a wall-bound pendant drop near detachment, which help to explain a discrepancy between our numerically determined static contact angle dependence of the critical Bond number and its sharp-interface counterpart from a static stability analysis of equilibrium shapes after numerical integration of the Young-Laplace equation. Finally, we present new results from phase-field simulations of the motion of an isolated droplet down an incline in gravity, showing that dynamic contact angle hysteresis can be explained in terms of the nonequilibrium surface tension.  相似文献   

19.
We describe a modeling technique for dynamic contact angle between a phase interface and a solid wall using a generalized Navier boundary condition in the context of a front-tracking-based multiphase method. The contact line motion is determined by the generalized Navier slip boundary condition in order to eliminate the infinite shear stress at the contact line. Applying this slip boundary condition only to the interface movement with various slip ratios shows good agreement with experimental results compared to allowing full fluid slip along the solid surface. The interface slip model performs well on grid convergence tests using both the slip ratio and slip length models. A detailed energy analysis was performed to identify changes in kinetic, surface, and potential energies as well as viscous and contact line dissipation with time. A friction coefficient for contact line dissipation was obtained based on the other computed energy terms. Each energy term and the friction coefficient were compared for different grid resolutions. The effect of varying the slip ratio as well as the contact angle distribution versus contact line speed was analyzed. The behavior of drop impact on a solid wall with different advancing and receding angles was investigated. Finally, the proposed dynamic contact model was extended to three dimensions for large-scale parallel calculations. The impact of a droplet on a solid cylinder was simulated to demonstrate the capabilities of the proposing formulation on general solid structures. Widely different contact angles were tested and showed distinctive characteristic behavior clearly.  相似文献   

20.
We present three-dimensional numerical simulations, employing a lattice Boltzmann method for three-phase system of liquid, gas, and solid, and investigate the influence of a solid particle on the dynamic and departure of a droplet after coalescence on superhydrophobic substrates. A particle can be removed autonomously by the jumping motion of the droplet, which partially or fully covers the particle. This spontaneous removal from superhydrophobic substrates is achieved by converting surface energy to kinetic energy, independent of gravity. We discussed the effect of size, wettability and initial placement of particle on the evolution of lateral and vertical motion of the droplet. The results indicate that the droplet with a fully immersed particle, as in the floating mechanism, reaches to the same equilibrium height as a particle-free droplet. However, the droplet with a partially immersed particle, as in the lifting mechanism, can have a substantial jumping velocity compared to a particle-free droplet. As the size of the partially immersed particle approaches its critical limit, which is equal to the size of the droplet, the droplet jumping and transport from the substrate is enhanced. Besides the particle size, the particle wettability can result in a considerable droplet jumping velocity. A particle with a neutrally wetting contact angle (i.e. 90°) is found to elevate the transport of the droplet to a higher distance from the substrate relative to a partially wetting case (i.e. 60°). In the lifting removal mechanism, unlike the floating removal mechanism, the particle initial placement is highly critical for the detachment of the merged droplet from the substrate, as well as the elevation of the detached droplet to a longer distance from the substrate. For a partially immersed particle, the critical particle initial position from the substrate above which the droplet-particle system does not jump away from the substrate is independent of particle size and wettability and is about 1.5rd where rd is the initial size of the droplet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号