首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of [MCl4(eta-C5H5)](M = Nb, Ta) with Ph3Sn{HB(mt)3} (mt = methimazolyl) provide structurally characterised complexes of the new chlorobis(methimazolyl)borate ligand, [MCl3(eta-C5H5){kappa2-S,S'-HClB(mt)2}].  相似文献   

2.
A new polynucleating oxime-containing Schiff base ligand, 2-hydroxyimino- N'-[1-(2-pyridyl)ethylidene]propanohydrazone (H pop), has been synthesized and fully characterized. pH potentiometric, electrospray ionization mass spectrometric, and spectrophotometric studies of complex formation in H 2O/DMSO solution confirmed the preference for polynuclear complexes with 3d metal ions. Single-crystal X-ray diffraction analyses of [Ni 4( pop) 4(HCOO) 4].7H 2O ( 1), [Cu 4( pop-H) 4(HCOOH) 4].H 2O ( 2), and [Cu 4( pop-H) 4(H 2O) 4].9H 2O ( 3) indicated the presence of a [2 x 2] molecular grid structure in all three compounds but distinct configurations of the cores: a head-to-tail ligand arrangement with overall S 4 symmetry of the grid in the Cu (2+) complexes as opposed to a head-to-head ligand arrangement with (noncrystallographic) C 2 grid symmetry for the Ni (2+) complex. A cryomagnetic study of 3 revealed intramolecular ferromagnetic exchange between copper ions in the grid, while in 1, antiferromagnetic interactions between the metal ions were observed.  相似文献   

3.
Hill AF  Rae AD  Smith MK 《Inorganic chemistry》2005,44(21):7316-7318
The first early transition metal tris(methimazolyl)borate com-plexes [M(=NR)Cl2{HB(mt)3}] (M = Nb, Ta; R = C6H3(i)Pr(2)-2,6; mt = methimazolyl) have been obtained from the reactions of [Nb(=NR)Cl3(DME)] or [Ta(=NR)Cl3(THF)2] (DME = dimethyl ether; THF = tetrahydrofuran) with Na[HB(mt)3] and structurally characterized, illustrating that the HB(mt)3 ligand can indeed be compatible with "hard" metals in high oxidation states.  相似文献   

4.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

5.
Six noninterpenetrating organic-inorganic hybridized coordination complexes, [Mn(3)(2)(H(2)O)(2)](ClO(4))(2).2 H(2)O (5), [Mn(3)(2)(H(2)O)(2)](NO(3))(2) (6), [Mn(3)(2)(N(3))(2)].2 H(2)O (7), [Cu(3)(2)(H(2)O)(2)](ClO(4))(2) (8), [Mn(4)(2)(H(2)O)(SO(4))].CH(3)OH.5 H(2)O (9) and [Mn(4)(2)](ClO(4))(2) (10) were obtained through self-assembly of novel tripodal ligands, 1,3,5-tris(1-imidazolyl)benzene (3) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (4) with the corresponding metal salts, respectively. Their structures were determined by X-ray crystallography. The results of structural analysis of complexes 5, 6, 7, and 8 with rigid ligand 3 indicate that their structures are mainly dependant on the nature of the organic ligand and geometric need of the metal ions, but not influenced greatly by the anions and metal ions. While in complexes 9 and 10, which contain the flexible ligand 4, the counteranion plays an important role in the formation of the frameworks. Entirely different structures of complexes 5 and 10 indicate that the organic ligands greatly affect the structures of assemblies. Furthermore, in complexes 5 and 6, the counteranions located between the cationic layers can be exchanged by other anions. Reversible anion exchanges between complexes 5 and 6 without destruction of the frameworks demonstrate that 5 and 6 can act as cationic layered materials for anion exchange, as determined by IR spectroscopy, elemental analyses, and X-ray powder diffraction.  相似文献   

6.
The synthesis of a new oxaaza macrocyclic ligand, L, derived from O(1),O(7)-bis(2-formylphenyl)-1,4,7-trioxaheptane and tren containing an amine terminal pendant arm, and its metal complexation with alkaline earth (M = Ca(2+), Sr(2+), Ba(2+)), transition (M = Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+)), post-transition (M = Pb(2+)), and Y(3+) and lanthanide (M = La(3+), Er(3+)) metal ions are reported. Crystal structures of [H(2)L](ClO(4))(2).3H(2)O, [PbL](ClO(4))(2), and [ZnLCl](ClO(4)).H(2)O are also reported. In the [PbL] complex, the metal ion is located inside the macrocyclic cavity coordinated by all N(4)O(3) donor atoms while, in the [ZnLCl] complex, the metal ion is encapsulated only by the nitrogen atoms present in the ligand. pi-pi interactions in the [H(2)L](ClO(4))(2).3H(2)O and [PbL](ClO(4))(2) structures are observed. Protonation and Zn(2+), Cd(2+), and Cu(2+) complexation were studied by means of potentiometric, UV-vis, and fluorescent emission measurements. The 10-fold fluorescence emission increase observed in the pH range 7-9 in the presence of Zn(2+) leads to L as a good sensor for this biological metal in water solution.  相似文献   

7.
From the two nitrogen-rich ligands BT(2-) (BT=5,5'-bitetrazole) and BTT(3-) (BTT=1,3-bis(1H-tetrazol-5-yl)triazene), a series of novel rare earth metal complexes were synthesised. For the BT ligand, a vast number of these complexes could be structurally characterised by single-crystal XRD, revealing structures ranging from discrete molecular aggregates to salt-like compounds. The isomorphous complexes [La2(BT)3]14 H2O (1) and [Ce2(BT)3]14 H2O (2) reveal discrete molecules in which one BT(2-) acts as a bridging ligand and two BT groups as chelating ligands. The complexes, [M(BT)(H2O)7]2[BT] x (x) H2O (3-5), (M=Nd (3), Sm (4), and Eu (5)), are also isomorphous and consist of [M(BT)(H2O)7]+ ions in which only one BT(2-) acts as a chelate ligand for each metal centre. [Tb(H2O)8]2[BT]3 x H2O (6) and [Er(H2O)8](2)[BT](3)x H2O (7) are salt-like compounds that do not exhibit any significant metal-nitrogen contacts. In the BTT-samarium compound 9, discrete molecules were found in which BTT(3-) acts as a tridentate ligand with three Sm--N bonds.  相似文献   

8.
将配体L[2,5-二-(3,5-二甲基吡唑-4-巯基)-1,3,4-噻二唑]与Co(NO3)2 6H2O,Cd(NO3)2 4H2O和MnCl2 4H2O进行配位反应,得到三个配合物[Co(L)2(H2O)4](NO3)2 4(CH3CH2OH)(1),[Cd(L)2(H2O)4](NO3)2 4(CH3CH2OH)(2),[Mn(L)2(Cl)2(CH3OH)2]2(CH3OH)(3),并用元素分析,FT-IR和X射线单晶衍射进行了表征.分析结果表明,配体L呈"U"形,配合物1~3呈"S"形.配合物中Co(II),Cd(II),Mn(II)的配位环境均为扭曲八面体,每个金属离子同时和两个配体进行配位.配体和配合物体外抑菌活性研究结果表明,配体及其配合物都有一定的抑菌活性.  相似文献   

9.
A convenient six-step procedure is developed to routinely prepare the hexadentate ligand cis,cis-1,3,5-triaminocyclohexane-N,N',N"-triacetic acid (H3tachta) as an HCl salt. Complexes of gallium(III) and indium(III), [Ga(tachta)] and [In(tachta)], are synthesized from the reactions of the ligand and the corresponding metal precursors. Copper(II), palladium(II), and cobalt(II) complexes, [Cu(Htachta)], [Pd(Htachta)], and [Co(Htachta)], are obtained from the reactions of H3tachta with the corresponding metal chlorides. The structures of H3tachta.3HCl.2H2O (C12H28Cl3N3O8) and [Ga(tachta)] (C12H18GaN3O6) are characterized. The crystal of H3tachta.3HCl.2H2O is monoclinic, of the space group P2(1)/c, with a = 15.1688(4) A, b = 8.4708(2) A, c = 15.9408(2) A, beta = 108.058(1) degrees, and Z = 4; that of [Ga(tachta)] is cubic, of space group Pa3, with a = 14.0762(1) A and Z = 8. The gallium atom of [Ga(tachta)] is six-coordinated in the solid state, and the complex assumes a pseudooctahedronal geometry with the completely deprotonated hexadentate ligand encapsulating the metal ion.  相似文献   

10.
The new dihydridobis(3-nitro-1,2,4-triazolyl)borate ligand, [H2B(tzNO2)2]-, has been synthesized in dimethylacetamide solution, using 3-nitro-1,2,4-triazole and KBH4 through careful temperature control, and characterized as its potassium salt. The zinc(II) and cadmium(II) complexes, {M[H2B(tzNO2)2]Cl(H2O)2}, have been prepared by metathesis of [H2B(tzNO2)2]K with ZnCl2 and CdCl2, respectively. The complexes likely contain a metal core in which the ligand is coordinated to the metal ions in the K2-N,N' or K4-N,N',O,O' fashion. A single-crystal structural characterization is reported for the potassium dihydrobis(3-nitro-1,2,4-triazolyl)borate. The potassium salt is polymeric and shows several K...N and K...O interactions.  相似文献   

11.
The reaction of the new platinaboratrane salt [PtH(PTol3){B(mt)3}]Cl(Pt-->B)8 (mt = methimazolyl, Tol = C6H4Me-4) with 2 equivalents of PR3 (R = Me, Et) affords, via hydride migration to boron and ligand substitution, the salts [Pt(PR3)2{kappa 2-S,S'-HB(mt)3}]Cl, which slowly undergo B-H reactivation, to afford, ultimately, the platinaboratrane salts [PtH(PR3){B(mt)3}]Cl(Pt-->B)8.  相似文献   

12.
Zinc metal reduction of the cobalt(III) complex [Co(1,4-bcc)](+) (1,4-bcc = 1,4-bis-carboxymethylcyclam) produces the corresponding cobalt(II) complex which crystallises as the coordination polymer {[Co(1,4-bcc)]ZnCl(2)}(n). A method has been developed for removal of the cobalt(III) ion from [Co(1,4-bcc)](+) and isolation of the free ligand as its hydrochloride salt, H(2)(1,4-bcc).4HCl. This has been used for the preparation of new metal complexes, and the syntheses and characterisation of the copper(ii), nickel(ii), zinc(ii) and chromium(iii) complexes containing the 1,4-bcc ligand are described. X-Ray crystal structures of {[Co(1,4-bcc)]ZnCl(2)}(n).2.5H(2)O, {[Cu(1,4-bcc)]CuCl(2)}(n).0.25MeOH.H(2)O and [Cu(1,4-bcc)H]ClO(4) show the complexes to have the trans(O) geometry of the 1,4-bcc ligand, while the structure of [Cr(1,4-bcc)H(0.5)](ClO(4))(1.5).EtOH exhibits the cis(O) configuration.  相似文献   

13.
The crystal structure of the complex [Cu4(H-2L)2(H2O)2(ClO4)2](ClO4)(2).2H2O where L is a new pyrazole ligand containing 1,5-diaminopentane spacers represents a new form of obtaining metal ion-induced inorganic-organic cages.  相似文献   

14.
Three new organic-inorganic hybrid complexes based on 3d-transition metal monosubstituted Keggin polyoxometalates (POMs) with imidazole (Im) as pendant ligands, formulated as (HIm)(6-)[SiW11O39NiIm]0.8[SiW11O39Ni(H2O)]0.2.7H2O (1), (Im)4Na6[SiW11O39MnIm]0.69[SiW11O39Mn(H2O)]0.31.7.5H2O (2) and (HIm)6[SiW11O39CoIm]0.63[SiW11O39Co(H2O)]0.37.7H2O (3), have been synthesized and characterized by IR spectroscopy, UV-visible spectroscopy, elemental analysis, TG analysis, cyclic voltammetry, magnetic properties, EPR and single-crystal/powder X-ray diffraction. The structural analyses indicate that the 3d metal atoms are incorporated into the vacancy of the alpha-[SiW11O39](8-) (SiW11). Complexes 1-3 are the first examples of crystallographically characterized 3d-transition metal mono-substituted POMs with an antenna organic ligand synthesized under normal bench conditions.  相似文献   

15.
The influence of the metal size in the nuclearity of the complexes derived from the hydrazone ligand 2,6-bis(1-salicyloylhydrazonoethyl)pyridine [H(4)daps] has been investigated. We have synthesised a series of new complexes [M(H(x)daps)] x yH(2)O, (x = 2,3; y = 0-3) with M = Ag (1), Cd (2), Al (3), Sn (4) and Pb (6), using an electrochemical procedure. The crystal and molecular structures have been determined for the mononuclear complexes [Sn(H(2)daps)(H(2)O)(2)] x 4H(2)O (5) and [Pb(H(2)daps)(CN)][Et(4)N] (7). Complex is the first neutral Sn(II) complex derived from a pentadentate hydrazone Schiff base ligand. Complex shows the lead coordinated to the hydrazone donor set and a cyanide ligand, being the first reported complex with the lead atom coordinated to a monodentate cyanide group. Additionally, we have synthesised the lead complex using chemical conditions, in the presence of sodium cyanide which allowed us to isolate the neutral complex [Pb(H(2)daps)] (8). Evaporation of these mother liquors led the novel compound [Pb(Hdaphs)(CH(3)COO)] (9). Complex 9 shows the initial ligand hydrolysed in one of the imine bonds giving rise to a new tetradentate ligand [H(2)daphs] coordinated to the lead atom and a bidentate acetate group. Moreover, the solution behaviour of the complexes has been investigated by (1)H, (113)Cd, (117)Sn and (207)Pb NMR techniques. In particular multinuclear NMR has provided new useful data to correlate factors such as oxidation state, coordination number and nature of the kernel donor atoms due to the new coordination found in complexes 5 and 7. The comparative study of the structures of the complexes derived from this pentadentate [N(3)O(2)] hydrazone ligand let us to conclude that the metal size is a key factor to control the nuclearity of the complexes derived from the ligand [H(4)daps].  相似文献   

16.
Two transition metal dinuclear complexes of [Mn2(OOCC6H4SSC6H4COO)- (Phen)2(H20)]n 1 and [CuE(OOCC6H4S)2(Phen)2] 2 were hydrothermally synthesized by the reaction of equivalent metal dichloride with 2,2'-dithiobis(benzoic acid) (HE-DTBB). Structure analysis indicates that each Mn2+ ion in I is coordinated by one chelate phen ligand, one bridging water molecule and three DTBB ligands forming Mn2+ dinuclear units which are further linked into one-dimensional chain by DTBB ligand. Under similar reaction conditions, the 2,2'-dithio- his(benzoic acid) ligand undergoes thiol reduction to form 2-mercaptobenzoic (H-2-MBA) in 2 where two Cu2+ ions are coordinated by phen and MBA ligands only constructing a dinuclear unit.  相似文献   

17.
Cationic metal species normally function as Lewis acids, accepting electron density from bound electron-donating ligands, but they can be induced to function as electron donors relative to dioxygen by careful control of the oxidation state and ligand field. In this study, cationic vanadium(IV) oxohydroxy complexes were induced to function as Lewis bases, as demonstrated by addition of O2 to an undercoordinated metal center. Gas-phase complex ions containing the vanadyl (VO2+), vanadyl hydroxide (VOOH+), or vanadium(V) dioxo (VO2+) cation and nitrile (acetonitrile, propionitrile, butyronitrile, or benzonitrile) ligands were generated by electrospray ionization (ESI) for study by multiple-stage tandem mass spectrometry. The principal species generated by ESI were complexes with the formula [VO(L)n]2+, where L represents the respective nitrile ligands and n=4 and 5. Collision-induced dissociation (CID) of [VO(L)5]2+ eliminated a single nitrile ligand to produce [VO(L)4]2+. Two distinct fragmentation pathways were observed for the subsequent dissociation of [VO(L)4]2+. The first involved the elimination of a second nitrile ligand to generate [VO(L)3]2+, which then added neutral H2O via an association reaction that occurred for all undercoordinated vanadium complexes. The second [UO(L)4]2+ fragmentation pathway led instead to the formation of [VOOH(L)2]+ through collisions with gas-phase H2O and concomitant losses of L and [L+H]+. CID of [VOOH(L)2]+ caused the elimination of a single nitrile ligand to generate [VOOH(L)]+, which rapidly added O2 (in addition to H2O) by a gas-phase association reaction. CID of [VONO3(L)2]+, generated from spray solutions created by mixing VOSO4 and Ba(NO3)2 (and precipitation of BaSO4), caused elimination of NO2 to produce [VO2(L)2]+. CID of [VO2(L)2]+ produced elimination of a single nitrile ligand to form [VO2(L)]+, a V(V) analogue to the O2-reactive V(IV) species [VOOH(L)]+; however, this V(V) complex was unreactive with O2, which indicates the requirement for an unpaired electron in the metal valence shell for O2 addition. In general, the [VO2(L)2]+ species required higher collisions energies to liberate the nitrile ligand, suggesting that they are more strongly bound than the [VOOH(L)2]+ counterparts.  相似文献   

18.
The syntheses and crystal structures of the first copper(I) phosphonate, Cu2(H3L)(bipy)(2).2H2O 1 (H5L = C4HO3N(CH2PO3H2)2), which is also the first example of metal phosphonates formed by a type of organic reaction, and a novel luminescent Mn(II) squarate diphosphonate, {Mn[NH(CH2PO3H)2](H2O)2}2{Mn(C4O4)(H2O)4}.(C4H2O4) 2, have been reported. The structure of 1 features a layer architecture in which the Cu(I) centers are three coordinated, and the newly formed ligand acts as a bidentate metal linker. Compound 2 is composed of 1D chains of Mn[NH(CH2PO3H)2](H2O)2, 1D chains of {Mn(C4O4)(H2O)4}, as well as the neutral squaric acid molecules. These three types of building units are interconnected via hydrogen bonding.  相似文献   

19.
The equilibrium geometries of the molybdenum oxo/peroxo compounds MoOn(O2)3-n and the related complexes [MoOn(O2)3-n(OPH3)] and [MoOn(O2)3-n(OPH3)(H2O)] (n = 0-3) have been calculated using gradient-corrected density-functional theory at the B3LYP level. The structures of the peroxo complexes with ethylene ligands [MoOn(O2)3-n(C2H4)] and [MoOn(O2)3-n(OPH3)(C2H4)] (n = 1, 2) where ethylene is directly bonded to the metal have also been optimized. Calculations of the metal-ligand bond-dissociation energies show that the OPH3 ligand in [MoOn(O2)3-n(OPH3)] is much more strongly bound than the ethylene ligand in [MoOn(O2)3-n(C2H4)]. This makes the substitution of phosphane oxide by olefins in the epoxidation reaction unlikely. An energy-minimum structure is found for [MoO(O2)2(OPH3)(C2H4)], for which the dissociation of C2H4 is exothermic with D0 = -5.2 kcal/mol. The reaction energies for the perhydrolysis of the oxo complexes with H2O2 and the epoxidation of ethylene by the peroxo complexes have also been calculated. The peculiar stability of the diperoxo complex [MoO(O2)2(OPH3)(H2O)] can be explained with the reaction energies for the perhydrolysis of [MoOn(O2)3-n(OPH3)(H2O)]. The first perhydrolysis step yielding the monoperoxo complex is less exothermic than the second perhydrolysis reaction, but the further reaction with H2O2 yielding the unknown triperoxo complex is clearly endothermic. CDA analysis of the metal-ethylene bond shows that the binding interactions are mainly caused by charge donation from the ligand to the metal.  相似文献   

20.
The isomorphous polymeric complexes [M(mu-C(6)H(5)NHC(4)O(3))(2)(CH(3)OH)(2)](n) [M = Mn (1), Co (2), Cu (4), Zn (5)] are produced by reacting the anilinosquarate anion with the appropriate metal nitrates in a methanolic solution. Each of these complexes contains the central metal atom in a slightly distorted octahedral environment, with the coordination polyhedron consisting of four mu-1,2-bridging anilinosquarate ligands and two trans-oriented methanols. The polymer chains propagate to form a two-dimensional net of metal centers, with the conformation of the component sheets in the net being controlled by intramolecular N-H...O and O-H...O hydrogen bonds. Under reaction conditions similar to those used in the synthesis of the polymers 1, 2, 4, and 5, the nickel(II) monomer [Ni(C(6)H(5)NHC(4)O(3))(2)(H(2)O)(4)].2H(2)O (3) is produced in which each nickel center is attached to two cis-coordinated anilinosquarate and four aqua ligands in a distorted octahedral arrangement. The ligand conformation in 3 is stabilized by both intra- and intermolecular hydrogen bonding, which results in the formation of a sheet polymer having distinct hydrophobic and hydrophilic surfaces. Magnetochemical analysis of 1 and 4 reveals normal paramagnetic behavior for 1 and a very weak ferromagnetic interaction in 4; the absence of significant magnetic interactions is attributed to the distortion of the C(4) cycle of the anilinosquarate ligand (lower than C(2)(v) symmetry) in these complexes. Reaction of anisolesquarate with M(NO(3))(2).xH(2)O in acetonitrile produced the set of isomorphous salts [M(H(2)O)(6)][CH(3)OC(6)H(5)C(4)O(3)](2) [M = Mn (6), Co (7), Ni (8), Zn (9)]. The anisolesquarate anions in 6-9 are hydrogen bonded to the [M(H(2)O)(6)](2+) ions to form polymer chains, which are further linked by hydrogen bonds to form complex sheets. Complexation of the anisolesquarate ligand was not observed even when other solvents and reaction conditions were employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号