首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Compatibilization of the partially miscible poly(vinylidene fluoride) (PVDF)/poly(styrene-co-acrylonitrile) (SAN) pair by a third homopolymer, i.e., poly(methyl methacrylate) (PMMA), was investigated in relation to cross section morphology, crystallization behaviors and hydrophilicity of the polyblends. Scanning electron microscopy showed a more regular and homogeneous morphology when more than 15 wt.% PMMA was incorporated. The samples presented only α phase regardless of PMMA content in the blend. As the PMMA content increased in the blends, the interactions between each component were enhanced, and the crystallization of PVDF was limited, leading to a decreasing of the crystallinity and the crystallite thickness. Besides, the hydrophilicity of PVDF was further improved by PMMA addition. The sample containing 15 wt.% PMMA showed a more hydrophilic property due to the more polar part of surface tension induced by PMMA addition. Observed from the cross section of the blends, the miscibility of partially miscible PVDF/SAN blends were efficiently improved by PMMA incorporation.  相似文献   

2.
Miscibility and crystallization behavior have been studied for polytetrafluoroethylene(PTFE)/poly(tetrafluoroethylene‐co‐2 mol‐% perfluoropropylvinyl ether)(PFA copolymer) blends by the use of differential scanning calorimetry, electron microscopy, X‐ray diffractometry and dynamic mechanical spectroscopy. In the amorphous phase, the two components were miscible with each other over all blending ratios, and it was found that the PFA copolymer was compatible with the PTFE matrix, when the PFA content is ≤ 50 wt.‐%, while PTFE was mixed in the PFA matrix when the PFA content is >50 wt.‐%. All the blends were crystalline as well as PTFE and PFA. The crystallization behavior was closely connected to the polymer composition of the amorphous state described above. It was conjectured that the crystallization is controlled by the PTFE matrix when the PFA content is ≤ 50 wt.‐%, while by the PFA matrix when the PFA content is >50 wt.‐%.  相似文献   

3.
Blends of isotactic (natural) poly(3‐hydroxybutyrate) (PHB) and poly(methyl methacrylate) (PMMA) are partially miscible, and PHB in excess of 20 wt % segregates as a partially crystalline pure phase. Copolymers containing atactic PHB chains grafted onto a PMMA backbone are used to compatibilize phase‐separated PHB/PMMA blends. Two poly(methyl methacrylate‐g‐hydroxybutyrate) [P(MMA‐g‐HB)] copolymers with different grafting densities and the same length of the grafted chain have been investigated. The copolymer with higher grafting density, containing 67 mol % hydroxybutyrate units, has a beneficial effect on the mechanical properties of PHB/PMMA blends with 30–50% PHB content, which show a remarkable increase in ductility. The main effect of copolymer addition is the inhibition of PHB crystallization. No compatibilizing effect on PHB/PMMA blends with PHB contents higher than 50% is observed with various amounts of P(MMA‐g‐HB) copolymer. In these blends, the graft copolymer is not able to prevent PHB crystallization, and the ternary PHB/PMMA/P(MMA‐g‐HB) blends remain crystalline and brittle. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1390–1399, 2002  相似文献   

4.
The poly(hydroxy ether of bisphenol A)‐based blends containing poly(acrylontrile‐co‐styrene) (SAN) were prepared through in situ polymerization, i.e., the melt polymerization between the diglycidy ether of bisphenol A (DGEBA) and bisphenol A in the presence of poly(acrylontrile‐co‐styrene) (SAN). The polymerization reaction started from the initial homogeneous ternary mixture of SAN/DGEBA/bisphenol A, and the phenoxy/SAN blends with SAN content up to 20 wt % were obtained. Both the solubility behavior and Fourier transform infrared (FTIR) spectroscopy studies demonstrate that no intercomponent reaction occurred in the reactive blend system. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electronic microscopy (SEM) were employed to characterize the phase structure of the as‐polymerized blends. All the blends display the separate glass transition temperatures (Tg's); i.e., the blends were phase‐separated. The morphological observation showed that all the blends exhibited well‐distributed phase‐separated morphology. For the blends with SAN content less than 15 wt %, very fine SAN spherical particles (1–3 μmm in diameter) were uniformly dispersed in a continuous matrix of phenoxy and the fine morphology was formed through phase separation induced by polymerization. Mechanical tests show that the blends containing 5–15 wt % SAN displayed a substantial improvement of tensile properties and Izod impact strength, which were in marked contrast to those of the materials prepared via conventional methods. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 525–532, 1999  相似文献   

5.
The compatibilizing effect of poly(ε-caprolactone) (PCL) on the blends of two immiscible polymers, poly(hydroxy ether of bisphenol A) (phenoxy) and poly(styrene-co-acrylonitrile) (SAN) has been investigated. The phase behavior of the ternary blends was affected by the AN content in the SAN copolymers and a maximum miscible region was observed at 19.5 wt % of AN. The effect of AN content on the phase behavior of the ternary blends was interpreted in terms of the relative magnitude of the segmental interaction energy densities, which were obtained by combining a melting point depression and an extended binary interaction model. When a small amount of PCL was added to the phenoxy/SAN blends, the phase morphology showed a finer phase dispersion, indicating that the interfacial tension between the phenoxy and SAN is considerably reduced. However, the improvement in tensile properties was limited despite the morphological change with the PCL content. From the results of the DSC measurements, SEM, and tensile testing, it was understood that the PCL acted as a compatibilizer for the immiscible phenoxy/SAN blends. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
A tetraarmed star‐shaped poly(methyl methacrylate) (s‐PMMA) was synthesized via atom transfer radical polymerization with 2‐bromoisobutyryl pentaerythritol as the initiator. For comparison, a linear PMMA with the identical molecular weight (l‐PMMA) was also prepared. The blends of the two PMMA samples with poly (vinylidene fluoride) (PVDF) were prepared to investigate the effect of macromolecular topological structure on miscibility and crystallization behavior of the binary blends. The behavior of single and composition‐dependent glass transition temperatures was found for the blends of s‐PMMA with PVDF, indicating that the s‐PMMA is miscible with PVDF in the amorphous state just like l‐PMMA. The miscibility was further evidenced by the depression of equilibrium melting points. It is found that the blends of s‐PMMA and PVDF displayed the larger k value of Gordon–Taylor equation than the blends of l‐PMMA and PVDF blends. According to the depression of equilibrium melting points, the intermolecular parameters for the two blends were estimated. It is noted that the s‐PMMA/PVDF blends displayed the lower interaction parameter than l‐PMMA/PVDF blends. The isothermal crystallization kinetics shows that the crystallization of PVDF in the blends containing s‐PMMA is faster than that in the blends containing the linear PMMA. The surface‐folding free energy of PVDF chains in the blends containing s‐PMMA is significantly lower than those in the blends containing l‐PMMA. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2580–2593, 2007  相似文献   

7.
Blends of poly(vinylidene fluoride) (PVDF), silicone rubber (SR) and flurorubber (FKM) were prepared via peroxide dynamic vulcanization. The effect of FKM loading on the morphology, mechanical properties, crystallization behavior, rheology and dynamic mechanical properties of the PVDF/SR/FKM ternary blends was investigated. A “network” was observed in the PVDF/SR binary blends, which disappeared in the ternary blends, but a core-shell-like structure was formed. The mechanical properties were significantly improved. The Izod impact strength of PVDF/SR/FKM blend with 19 wt% FKM was 18.3 kJ/m2, which was 3–4 times higher than the PVDF/SR binary blend. The complex viscosity and storage modulus of the PVDF/SR/FKM blends decreased with increasing FKM content, hence the processability was improved. The increase of FKM content seemed to show a favorable effect on the crystallization of the PVDF component. It promoted the nucleation process of PVDF, leading to increased polymer crystallization rate and higher crystallization temperature. The glass-rubber transition temperature of the PVDF phase moved to a lower temperature.  相似文献   

8.
Blends of poly(vinylidene fluoride) (PVDF) and silicone rubber (SR) were prepared through dynamic vulcanization. The effects of SR content on crystallization behavior, rheology, dynamic mechanical properties and morphology of the blends were investigated. Morphology characterization shows that the crosslinked spherical SR particles with an average diameter of 2-4 μm form a “network” in the PVDF continuous phase. The dynamic mechanical properties indicate the interface adhesion between PVDF and rubber phase is improved by the dynamic vulcanization. The rheology study shows that with the increase of rubber content the blends pseudoplastic nature is retained, while the viscosity increases, and hence the processability is less good. The incorporation of SR phase promotes the nucleation process of PVDF, leading to increased polymer crystallization rate and crystallization temperature. However, a higher content of SR seems to show a negative effect on the crystallinity of the PVDF component.  相似文献   

9.
Ferro‐ and piezo‐electric poly(vinylidene fluoride) (PVDF) thin film is reported to be obtained by using a poly(ionic liquid) (PIL) [poly(2‐(dimethylamino)ethyl methacrylate) methyl chloride quaternary salt] through solution route. The short range interactions between localized cationic ions of PIL and polar >CF2 of PVDF are responsible for modified polar γ‐PVDF (T3GT3Ḡ) formation. Modification in chain conformation of PVDF is confirmed by FTIR, XRD, and DSC studies suggesting the miscible PVDF–PIL (PPIL) blend. Up to 40 wt % loading of PIL in PVDF matrix enhances relative intensity of γ‐phase up to 50% in the entire crystalline phase. The P‐E hysteresis loop of PVDF‐PIL blends at 25 wt % PIL loading (PPIL‐25) thin film at sweep voltage of ±50 V shows excellent ferroelectric property with nearly saturated high remnant polarization ∼6.0 µC cm−2 owing to large proportion of γ‐PVDF. However, non‐polar pure PVDF thin film shows unsaturated hysteresis loop with 1.4 µC cm−2 remnant polarization. The operation voltage decreases effectively because of the polar γ‐phase formation in PPIL blended film. High‐sensitivity piezo‐response force microscopy shows electromechanical switching property at low voltages in PPIL‐25 thin films through local switching measurements, making them potentially suitable as ferroelectric tunnel barriers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 795–802  相似文献   

10.
Poly(vinylidene fluoride) (PVDF) blend microporous membranes were prepared by PVDF/poly(methyl methacrylate) blend (with mass ratio = 70/30) via thermally induced phase separation. Benzophenone (BP) and methyl salicylate (MS) were used as diluents. The phase diagram calculations were carried out in terms of a pseudobinary system, considering the PVDF blend to be one component. The crytallization behaviors of PVDF in the dilutions were detected by differential scanning calorimetry measurement. In these two systems, the melting and crystallization temperatures leveled off in the low polymer concentration (<40 wt %), but shifted to a higher temperature when the polymer concentration >40 wt %. The calculated crystallinity of PVDF for samples with low polymer concentrations was greater than those with high polymer concentrations, because of the limited mobility of polymer chains at a high polymer concentration. The membrane structure as determined by scanning electron microscopy depended on the phase separation mechanism. The quenched samples mainly illustrated the occurrence of crystallization on the same time scale as the liquid–liquid phase separated, resulting in the obvious spherulitic structure with small pores in the spherulites. As the polymer concentration increased, the size of the spherulites and pores within the spherulite was decreased. The evaluated porosity for BP diluted system was higher than that for MS diluted system, and decreased with the increased polymer concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 248–260, 2009  相似文献   

11.
Polymer blends based on poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO) have been prepared to analyze the crystallization kinetics of poly(ethylene oxide) confined in semicrystalline PVDF with different ratios of both polymers. Both blend components were dissolved in a common solvent, dimethyl formamide. Blend films were obtained by casting from the solution at 70 °C. Thus, PVDF crystals are formed by crystallization from the solution while PEO (which is in the liquid state during the whole process) is confined between PVDF crystallites. The kinetics of crystallization of the confined PEO phase was studied by isothermal and nonisothermal experiments. Fitting of Avrami model to the experimental DSC traces allows a quantitative comparison of the influence of the PVDF/PEO ratio in the blend on the crystallization behavior. The effect of melting and further recrystallization of the PVDF matrix on PEO confinement is also studied. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 588–597  相似文献   

12.
Various PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends were selected for mechanical testing in compression. At low PVDF content (less than 50/50 w/w), the blends remain amorphous and PVDF and PMMA are fully miscible. In PVDF-richer blends, PVDF crystallizes in part, leading to a PMMA-enriched homogeneous amorphous phase. In this study, the degree of crystallinity was set at equilibrium by appropriate annealing of the samples before testing. Mechanical analysis was focused on the low deformation range, and especially on the yield region. Depending on the test temperature and blend composition, three types of response were identified, depending on whether plastic deformation is influenced: 1) by the PMMA secondary relaxation motions, 2) by the PVDF/PMMA glass transition motions, or 3) by the crystallite-constrained PVDF chains.  相似文献   

13.
To enhance the heat resistance of poly(styrene‐co‐acrylonitrile‐co‐butadiene), ABS, miscibility of poly(styrene‐co‐acrylonitrile), SAN, with poly(styrene‐con‐phenyl maleimide), SNPMI, having a higher glass transition temperature than SAN was explored. SAN/SNPMI blends casted from solvent were immiscible regardless of copolymer compositions. However, SNPMI copolymer forms homogeneous mixtures with SAN copolymer within specific ranges of copolymer composition upon heating caused by upper critical solution temperature, UCST, type phase behavior. Since immiscibility of solvent casting samples can be driven by solvent effects even though SAN/SNPMI blends are miscible, UCST‐type phase behavior was confirmed by exploring phase reversibility. When copolymer composition of SNPMI was fixed, the phase homogenization temperature of SAN/SNPMI blends was increased as AN content in SAN copolymer increased. To understand the observed phase behavior of SAN/SNPMI blend, interaction energies of blends were calculated from the UCST‐type phase boundaries by using the lattice‐fluid theory combined with a binary interaction model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1131–1139, 2008  相似文献   

14.
Blends were prepared from isotactic polypropylene (iPP) along with its b-nucleated form and poly(vinylidene-fluoride) (PVDF). Melting, and crystallization characteristics as well as structure of the blends were studied by polarized light microscopy (PLM) and differential scanning calorimetry. According to PLM studies, the phase structure of these blends is heterogeneous in the molten state. The temperature range of crystallization of PVDF during cooling is higher than that of iPP. PVDF has a strong α-nucleating effect on iPP. The crystallization of iPP starts on the surface of dispersed PVDF droplets and an α-transcrystalline layer forms on the surface of the crystalline PVDF phase. The iPP matrix crystallizes predominantly in a-form in spite of the presence of a highly active b-nucleating agent. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
李慧慧 《高分子科学》2012,30(2):269-277
The effect of PBS on the morphological features of PVDF has been investigated by optical and atomic force microscopies under various conditions.It was found that neat PVDF forms largeγform spherulites with extraordinarily weak birefringence at 170℃.Adding 30%PBS makes PVDF exhibit intrigued flower-like spherulitic morphology.The growth mechanism was explained by the decrease of the supercooling and the materials dissipation.Increasing the PBS content to 70%favors the formation of ring banded spherulites.Temperature dependent experiments verify theα→γphase transition occurs from the junction sites of theαandγcrystals,while starts from the centers ofαspherulites in the blends.Ring banded structures could be observed in neat PVDF,70/30 blend and 30/70 blend when crystallized at 155℃,withoutγcrystals.The band period of PVDFαspherulites increases with crystallization temperature as well as the amount of PBS content.At 140℃,spherulites in neat PVDF lose their ring banded feature,while coarse spherulites consisting of evident lamellar bundles could be found in 30/70 blend.  相似文献   

16.
Melt‐processable blends were prepared from rigid molecules of an ionically modified poly(p‐phenylene terephthalamide) (PPTA) and flexible‐coil molecules of poly(4‐vinylpyridine) (PVP). Dynamic mechanical analyses of blends with 50% or more of the ionic PPTA component revealed the presence of two distinct phases. The glass‐transition temperature of the more stable, ionic PPTA‐rich phase increased linearly with the ionic PPTA content. The second phase present in these blends was an ionic PPTA‐poor, or a PVP‐rich, phase. For this phase, a reasonably good fit of the data, showing the glass‐transition temperature as a function of the ionic PPTA content, was achieved between the results of this study and the reported results of previous investigation of molecular composites of the same two components with ionic PPTA contents of 15 wt % or less. The possible influence of annealing on the blend structure of a 90/10 blend of ionic PPTA and PVP was examined. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1468–1475, 2003  相似文献   

17.
The liquid–liquid phase‐separation (LLPS) behavior of poly(n‐methyl methacrylimide)/poly(vinylidene fluoride) (PMMI/PVDF) blend was studied by using small‐angle laser light scattering (SALLS) and phase contrast microscopy (PCM). The cloud point (Tc) of PMMI/PVDF blend was obtained using SALLS at the heating rate of 1 °C min?1 and it was found that PMMI/PVDF exhibited a low critical solution temperature (LCST) behavior similar to that of PMMA/PVDF. Moreover, Tc of PMMI/PVDF is higher than its melting temperature (Tm) and a large temperature gap between Tc and Tm exists. At the early phase‐separation stage, the apparent diffusion coefficient (Dapp) and the product (2Mk) of the molecules mobility coefficient (M) and the energy gradient coefficient (k) arising from contributions of composition gradient to the energy for PMMI/PVDF (50/50 wt) blend were calculated on the basis of linearized Cahn‐Hilliard‐Cook theory. The kinetic results showed that LLPS of PMMI/PVDF blends followed the spinodal decomposition (SD) mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1923–1931, 2008  相似文献   

18.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   

19.
Thermal measurements were carried out to investigate the macrostructure of as-cast poly(vinylidene fluoride) (PVDF)/poly(vinyl pyrrolidone) (PVP) blends. At high PVP content, above about 70 wt.%, the two components form a homogeneously mixed amorphous phase whose Tg varies with composition. Crystals are formed upon casting mixtures richer in PVDF; these systems exhibit complex thermal behavior that cannot be justified by a simple two-phase model. DSC measurements above room temperature on semicrystalline blends show, in addition to the melting of PVDF crystals at temperatures that decrease on increasing PVP content, a glass transition at about 80°C, independent of composition. Experimental results strongly support the hypothesis that an interphase, composed of essentially undiluted noncrystalline PVDF, is always associated with the lamellar crystals.  相似文献   

20.
In this paper, the influence of rubber particle size on the phase interface in dynamically vulcanized poly(vinylidene fluoride)/silicone rubber (PVDF/SR) blends without any modifier is discussed through the studies of specific surface of crosslinked SR particles, crystallization behavior and crystal morphology of the PVDF phase, interfacial crystallization, melt rheological behavior and mechanical properties of blends. A series of decreased average particle size was successfully obtained by control of rotor rate. It was found that properly high rotor rate helped to achieve a reduced particle size and a narrowing size distribution. The reduced SR particle size enlarged the PVDF/SR interface which has a positive effect on the interfacial crystallization and the melt rheological behavior. At high SR content, the negative effect of the poor interface interactions played the dominate role on determining the mechanical properties. However, the blend exhibited a unique stiffness-toughness balance at the PVDF/SR = 90/10. We hope that the present study could help to lay a scientific foundation for further design of a useful PVDF/SR blend with promoted properties to partly replace the high-cost synthetic fluorosilicone materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号