首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New bidentate N-(2,5-di-tert-butylphenyl)salicylaldimines bearing X = H, HO, CH3O, Br, NO2, 3,5-di-Br, 3-NO2-5-Br and 5,6-benzo substituents on the salicylaldehyde moiety, LxH, and their mononuclear bis[N-(2,5-di-tert-butylphenyl)salicylaldiminato]copper(II) complexes, Cu(Lx)2, have been prepared and investigated by IR, UV-Visible, 1H NMR, ESR spectroscopy, magnetic measurements, as well as reactions of Cu(LX)2 with PPh3 were studied. It has been found that some complexes with X = HO and CH3O unlike their electron-withdrawing and unsubstituted analogues are readily reduced by PPh3 via intramolecular electron transfer from ligand to copper(II) to give Cu-stabilized radical intermediates. The spectra of the primary radicals interpreted in terms of couplings of unpaired electron with (63,65)Cu, 31P, 14N nuclei and aromatic protons.  相似文献   

2.
New bidentate N-(2,6-di-phenyl-1-hydroxyphenyl) salicylaldimines bearing X=H and 3,5-di-t-butyl substituents on the salicylaldehyde ring, L(x)H, and their copper(II) complexes, M(Lx)2, (M=Cu(II), Co(II), Pd(II), Ni(II) and Zn(II)) have been synthesized and characterized by IR, UV/vis, 1H NMR, 13C NMR, ESR spectroscopy, magnetic susceptibility measurements, as well as their oxidation with PbO(2) and reduction (for Cu(Lx)2) with PPh(3) were investigated. ESR studies indicate that oxidation of M(Lx)2 produces ligand-centered M(II)-phenoxyl radical species. The Cu(Lx)2 complexes, unlike others M(Lx)2, are readily reduced by PPh3 via intramolecular electron transfer from ligand to copper(II) to give unstable radical intermediates which are converted to another stable secondary radical species. The analysis of ESR spectra of Cu(Lx)(2), Co(L1)(2) and generated phenoxyl radicals are presented.  相似文献   

3.
Abstract

New Cu(II) complexes Cu(L′x)2, where L′x=L′1, L′2, L′3, L′4 are monoanion of unsubstituted, 5-Cl, 5-Br and 3,5-di-Br-substituted 2-hydroxybenzylamines of redox-active N-(3,5-di-tert-butyl-1-hydroxyphenyl)-2-hydroxybenzylamines were synthesized. Each compound of L′xH and Cu(L′x)2 as well as products of their oxidation and reduction by PbO2 and PPh3, respectively, was characterized by IR, UV-visible and ESR spectroscopy. ESR results showed that one-electron oxidation of mononuclear tetrahedrally distorted Cu(L′x)2 chelates with PbO2, via C-C coupling of the Cu(II)-stabilized ligand radical intermediates and by the oxidative dehydrogenation of amine-chelates, produce new Cu(II) complexes with square-planar geometry. The powder ESR spectra of these new Cu(II) complexes exhibit a triplet-state type pattern with the zero-field splitting due to interaction between the copper(II) pairs. Interaction of Cu(L′x)2 with PPh3 via intramolecular ligand-metal electron transfer results in the formation of radical species and reduction of the metal center. All radical intermediates were characterized by ESR parameters.  相似文献   

4.
Complexing of 3,5-di-tert-butyl-1,2-benzoquinone-2-monooxime with Cu(II) in air and under N2 gave Cu(qo)2 and Cu(qo)2 x H2O (where qo is 3,5-di-tert-butyl-1,2-benzoquinone-2-monooximato-anion) complexes, respectively. The ESR spectroscopy showed that the reduction of these complexes with P(PhX)3 (X = H, m-Cl, m-CH3, p-Et2N-) and 1,4-bis(diphenyldiphosphino) butane (dppb) proceeds via the radical formation (phenoxazine, amino phenoxy and nitrene type radical intermediates) and pathways of reduction depend on the structure of these complexes. The reaction of Cu(qo), with dppb and P(PhX)3 phosphines gave essentially identical ESR spectra. At the same time, reduction of Cu(qo)2 x H2O with PPh3 result in entirely different unstable radical spectrum (g = 2.0046) which is further converted to another relatively stable Cu-containing radical signal (g = 2.0052). The unstable radical species attributed to nitrene type radicals. The initial complexes and all radical products were characterized by their ESR and optical spectra.  相似文献   

5.
The synthesis, spectroscopy (IR, UV-Vis, ESR), magnetic and thermal behaviors, as well electrochemistry and reactivity towards PPh3 of alkyl-substituted bis(2-nitrosophenolato)copper(II) complexes, CuLx2, where Lx = 4,6-di-t-Bu-2-nitrosophenolato (L1), 4-CH3-6-t-Bu-2-nitrosophenolato (L2), 4-t-Bu-2-nitrosophenolato (L3) mono-anion ligands, are presented. The solid-state and solution ESR spectra showed an axially symmetric g-tensors with gII > g 2.03 indicating that the unpaired electron is located in the dx2 - y2orbital. When CuLx2 complexes were treated with an excess of PPh3 in air or under vacuum in toluene (or other solutions) at 300K, as confirmed by UV-Vis and ESR examination, without formation of PPh3 adduct of the complexes, the immediately generation of semiquinone type radical species and reduction of Cu(II) to Cu(I) were observed. In the case of CuL(1)(2) the further conversion of the generated primary radical species to secondary bis(PPh3)2(phenoxazinolato)Cu(I) semiquinone type radical was detected. The cyclic voltammetry (CV) of CuLx2 exhibited two successive quasi-reversible ligand centered reductions and two irreversible metal and ligand centered oxidation processes. Electrochemical behaviors were interpreted in terms of the existence two-valence tautomeric nitroso and oximato isomers of CuLx2 in solution.  相似文献   

6.
New bis[N‐(2,6‐di‐tert‐butyl‐1‐hydroxyphenyl)salicylideneminato]copper(II) complexes bearing HO and CH3O substituents on the salicyaldehyde moiety were prepared, and have been characterized by elemental analyses, IR, UV/Vis, ESR spectroscopy, and magnetic moments. It has been found that in the synthesis of CH3O substituted complexes unlike HO bearing, the oxidative C–C coupling of coordinated salicylaldimine ligands take place. It has been suggested that the intermolecular H‐bonding is a dominant factor in controlling of oxidative C–C coupling conversion. The powder ESR spectra of CH3O substituted compounds unlike of HO are typical of a triplet state CuII dimers with a half‐field forbidden (δM = ± 2) and the allowed (δM = ± 1) transitions at 300 and 113 K.  相似文献   

7.
The lifetimes and transient resonance Raman spectra for Ru(II) complexes with the dipyrido[2,3-a:3',2'-c]phenazine (ppb) ligand and substituted analogues have been measured. The effect of altering the Ru(II) center ([Ru(CN)4]2- versus [Ru(bpy)2]2+), of the complex, on the excited-state lifetimes and spectra has been considered. For [Ru(bpy)2L]2+ complexes the excited-state lifetimes range from 124 to 600 ns in MeCN depending on the substituents on the ppb ligand. For the [Ru(CN)4L]2- complexes the lifetimes in H2O are approximately 5 ns. The transient resonance Raman spectra for the MLCT excited states of these complexes have been measured. The data are analyzed by comparison with the resonance Raman spectra of the electrochemically reduced [(PPh3)2Cu(mu-L*-)Cu(PPh3)2]+ complexes. The vibrational spectra of the complexes have been modeled using DFT methods. For experimental ground-state vibrational spectra of the complexes the data may be compared to calculated spectra of the ligand or metal complex. It is found that the mean absolute deviation between experimental and calculated frequencies is less for the calculation on the respective metal complexes than for the ligand. For the transient resonance Raman spectra of the complexes the observed vibrational bands may be compared with those of the calculated ligand radical anion, the reduced complex [Ru(CN)4L*-]3-, or the triplet state of the complex. In terms of a correlation with the observed transient RR spectra, calculations on the metal complex models offered no significant improvement compared to those based on the ligand radical anion alone. In all cases small structural changes are predicted on going from the ground to excited state.  相似文献   

8.
Employing a binucleating phenol-containing ligand PD'OH, a mu-phenoxo-mu-hydroperoxo dicopper(II) complex [Cu(II)2(PD'O-)(-OOH)(RCN)2](ClO4)2 (1, R = CH3, CH3CH2 or C6H5CH2; lambda(max) = 407 nm; nu(O-O) = 870 cm(-1); J. Am. Chem. Soc. 2005, 127, 15360) is generated by reacting a precursor dicopper(I) complex [Cu(I)2(PD'OH)(CH3CN)2](ClO4)2 (2) with O2 in nitrile solvents at -80 degrees C. Species 1 is unable to oxidize externally added substrates, for instance, PPh3, 2,4-tert-butylphenol, or 9,10-dihydroanthracene. However, upon thermal decay, it hydroxylates copper-bound organocyanides (e.g., benzylcyanide), leading to the corresponding aldehyde while releasing cyanide. This chemistry mimics that known for the copper enzyme dopamine-beta-monooxygenase. The thermal decay of 1 also leads to a product [Cu(II)3(L")2(Cl-)2](PF6)2 (6); its X-ray structure reveals that L" is a Schiff base-containing ligand which apparently derives from both oxidative N-dealkylation and then oxidative dehydrogenation of PD'OH; the chloride presumably derives from the CH2Cl2 solvent. With an excess of PPh3 added to 1, a binuclear Cu(I) complex [Cu(I)2(L')(PPh3)2](ClO4)2 (5) with a cross-linked PD'OH ligand L' has also been identified and crystallographically and chemically characterized. The newly formed C-O bond and an apparent k(H)/k(D) = 2.9 +/- 0.2 isotope effect in the benzylcyanide oxidation reaction suggest a common ligand-based radical forms during compound 1 thermal decay reactions. A di-mu-hydroxide-bridged tetranuclear copper(II) cluster compound [{Cu(II)2(PD'O-)(OH-)}2](ClO4)4 (8) has also been isolated following warming of 1. Its formation is consistent with the generation of [Cu(II)2(PD'O-)(OH-)]2+, with dimerization a reflection of the large Cu...Cu distance and thus the preference for not having a second bridging ligand atom (in addition to the phenolate O) for dicopper(II) ligation within the PD'O- ligand framework.  相似文献   

9.
The design, synthesis, and characterization of binuclear copper(I) complexes and investigations of their dioxygen reactivities are of interest in understanding fundamental aspects of copper/O2 reactivity and in modeling copper enzyme active-site chemistry. In the latter regard, unsymmetrical binuclear systems are of interest. Here, we describe the chemistry of new unsymmetrical binuclear copper complexes, starting with the binucleating ligand UN2-H, possessing a m-xylyl moiety linking a bis[2-(2-pyridyl)ethyl]amine (PY2) tridentate chelator and a 2-[2-(methylamino)ethyl]pyridine bidentate group. Dicopper(I) complexes of UN2-H, [Cu2(UN2-H)]2+ (1), as PF6- and ClO4- salts, are synthesized. These react with O2 (Cu:O2 = 2:1, manometry) resulting in the hydroxylation of the xylyl moiety, producing the phenoxohydroxodicopper(II) complex [Cu2(UN2-O-)(OH-)(CH3CN)]2+ (2). Compound 2(PF6)2 is characterized by X-ray crystallography, which reveals features similar to those of a structure described previously (Karlin, K. D.; et al. J. Am. Chem. Soc. 1984, 106, 2121-2128) for a symmetrical binucleating analogue having two tridentate PY2 moieties; here a CH3CN ligand replaces one pyridylethyl arm. Isotope labeling from a reaction of 1 using 18O2 shows that the ligand UN2-OH, extracted from 2, possesses an 18O-labeled phenol oxygen atom. Thus, the transformation 1 + O2-->2 represents a monooxygenase model system. [CuI2(UN2-OH)(CH3CN)]2+ (3), a new binuclear dicopper(I) complex with an unsymmetrical coordination environment is generated either by reduction of 2 with diphenylhydrazine or in reactions of cuprous salts with UN2-OH. Complex 3 reacts with O2 at -80 degrees C, producing the (mu-1,1-hydroperoxo)dicopper(II) complex [CuII2(UN2-O-)(OOH-)]2+ (4) (lambda max 390 nm (epsilon 4200 M-1 cm-1), formulated on the basis of the stoichiometry of O2 uptake by 3 (Cu:O2 = 2:1, manometry), its reaction with PPh3 giving O=PPh3 (85%), and comparison to previously studied close analogues. Discussions include the relevance and comparison to other copper bioinorganic chemistry.  相似文献   

10.
The reactions of [AuClL] with Ag(2)O, where L represents the heterofunctional ligands PPh(2)py and PPh(2)CH(2)CH(2)py, give the trigoldoxonium complexes [O(AuL)(3)]BF(4). Treatment of these compounds with thio- or selenourea affords the triply bridging sulfide or selenide derivatives [E(AuL)(3)]BF(4) (E=S, Se). These trinuclear species react with Ag(OTf) or [Cu(NCMe)(4)]PF(6) to give different results, depending on the phosphine and the metal. The reactions of [E(AuPPh(2)py)(3)]BF(4) with silver or copper salts give [E(AuPPh(2)py)(3)M](2+) (E=O, S, Se; M=Ag, Cu) clusters that are highly luminescent. The silver complexes consist of tetrahedral Au(3)Ag clusters further bonded to another unit through aurophilic interactions, whereas in the copper species two coordination isomers with different metallophilic interactions were found. The first is analogous to the silver complexes and in the second, two [S(AuPPh(2)py)(3)](+) units bridge two copper atoms through one pyridine group in each unit. The reactions of [E(AuPPh(2)CH(2)CH(2)py)(3)]BF(4) with silver and copper salts give complexes with [E(AuPPh(2)CH(2)CH(2)py)(3)M](2+) stoichiometry (E=O, S, Se; M=Ag, Cu) with the metal bonded to the three nitrogen atoms in the absence of AuM interactions. The luminescence of these clusters has been studied by varying the chalcogenide, the heterofunctional ligand, and the metal.  相似文献   

11.
2,6-Diacetylpyridine and 1,2-diaminoethane in the presence of copper(II) and zinc(II) chlorides containing a few drops of acetic acid were condensed into compositions [CuLH2]2.2HCl.H2O (1), [Cu2LPyz]2.2HCl.4CH3COCH3 (2) [CuZnLPyz]2.2HCl.2CH3COCH3.10H2O (3) and [ZnL'Cl]3.3HCl.3H2O (4) substantiated by elemental analyses, IR, UV-vis, 1H NMR and FAB mass spectral data. Demetallation of a Ni(II) complex (isolated as above) afforded macrocyclic skeleton LH4, whereas L' symbolizes a skeleton of the ligand containing only ethylenediamine and 2,6-diacetylpyridine. Molecular structure optimization using MM2 force field calculations for the complexes revealed distorted square pyramidal geometry around Cu(II) centers in complexes 1 and 2 and tetrahedral geometry around Cu(II) and Zn(II) centers with different degrees of distortion in complex 3 whereas three Zn(II) atoms (each in distorted square pyramidal geometry) attached via Cl bridges form a cyclic structure in complex 4. In complexes 1 and 2,Cu-Cu = 2.63-2.66 angstroms indicated the possibility of coupling between the two Cu(II) centers which has been supported by lower magnetic moment as well as ESR spectra showing half-field signal.  相似文献   

12.
By using the neutral bidentate nitrogen-containing ligand, bis(3,5-diisopropyl-1-pyrazolyl)methane (L1' '), the copper(I) complexes [Cu(L1' ')2](CuCl2) (1CuCl2), [Cu(L1' ')2](ClO4) (1ClO4), [Cu(L1' ')]2(ClO4)2 (2ClO4), [Cu(L1' ')]2(BF4)2 (2BF4), [Cu(L1' ')(NCMe)](PF6) (3PF6), [Cu(L1' ')(PPh3)](ClO4) (4ClO4), [Cu(L1' ')(PPh3)](PF6) (4PF6), [{Cu(L1' ')(CO)}2(mu-ClO4)](ClO4) (5ClO4), and the copper(II) complexes [{Cu(L1' ')}2(mu-OH)2(mu-ClO4)2] (6), and [Cu(L1' ')Cl2] (7) were systematically synthesized and fully characterized by X-ray crystallography and by IR and 1H NMR spectroscopy. In the case of copper(II), ESR spectroscopy was also applied. In comparison with the related neutral tridentate ligand L1', bis-chelated copper(I) complexes and binuclear linear-coordinated copper(I) complexes are easy to obtain with L1' ', like 1CuCl2, 1ClO4, 2ClO4, and 2BF4. Importantly, stronger and bulkier ligands such as acetonitrile (3PF6) and especially triphenylphosphine (4ClO4 and 4PF6) generate three-coordinate structures with a trigonal-planar geometry. Surprisingly, for the smaller ligand carbon monoxide, a mononuclear three-coordinate structure is very unstable, leading to the formation of a binuclear complex (5ClO4) with one bridging perchlorate anion, such that the copper(I) centers are four-coordinate. The same tendency is observed for the copper(II) bis(mu-hydroxo) compounds 6, which is additionally bridged by two perchlorate anions. Both copper(II) complexes 6 and 7 were obtained by molecular O2 oxidation of the corresponding copper(I) complexes. A comparison of the new copper(I) triphenylphosphine complexes 4ClO4 and 4PF6 with corresponding species obtained with the related tridentate ligands L1' and L1 (8ClO4 and 9, respectively) reveals surprisingly small differences in their spectroscopic properties. Density functional theory (DFT) calculations are used to shed light on the differences in bonding in these compounds and the spectral assignments. Finally, the reactivity of the different bis(pyrazolyl)methane complexes obtained here toward PPh3, CO, and O2 is discussed.  相似文献   

13.
A novel naringenin Schiff base ligand (1,2-di(4'-iminonaringenin)ethane, H6L) and its three transition metal complexes [Cu(II) complex (1), Zn(II) complex (2), and Ni(II) complex (3)] have been prepared and characterized on the basis of elemental analysis, molar conductivity, 1H-NMR, mass spectra, UV-vis spectra, and IR spectra. The DNA-binding properties of the ligand and its complexes have been investigated by absorption spectroscopy, fluorescence spectroscopy, ethidium bromide (EB) displacement experiments, and viscosity measurement. The results indicated that the ligand and its complexes can bind to DNA. The binding affinity of the Cu(II) complex (1) is higher than that of the ligand and the other two complexes. The intrinsic binding constant (Kb) of the complex (1) is 3.3x10(6). In addition, the suppression ratio for O2-. and HO. was determined. The 50% inhibition obtained for the ligand and its three complexes demonstrates that, compared to the ligand, the complexes exhibit higher antioxidative activity in the suppression of O2-. and HO..  相似文献   

14.
Galactose oxidase (GO) is an enzyme that catalyzes two-electron oxidations. Its active site contains a copper atom coordinated to a tyrosyl radical, the biogenesis of which requires copper and dioxygen. We have recently studied the properties of electrochemically generated mononuclear Cu(II)-phenoxyl radical systems as model compounds of GO. We present here the solution chemistry of these ligands under various copper and dioxygen statuses: N(3)O ligands first chelate Cu(II), leading, in the presence of base, to [Cu(II)(ligand)(CH(3)CN)](+) complexes (ortho-tert-butylated ligands) or [(Cu(II))(2)(ligand)(2)](2+) complexes (ortho-methoxylated ligands). Excess copper(II) then oxidizes the complex to the corresponding mononuclear Cu(II)-phenoxyl radical species. N(2)O(2) tripodal ligands, in the presence of copper(II), afford directly a copper(II)-phenoxyl radical species. Addition of more than two molar equivalents of copper(II) affords a Cu(II)-bis(phenoxyl) diradical species. The donor set of the ligand directs the reaction towards comproportionation for ligands possessing an N(3)O donor set, while disproportionation is observed for ligands possessing an N(2)O(2) donor set. These results are discussed in the light of recent results concerning the self-processing of GO. A path involving copper(II) disproportionation is proposed for oxidation of the cross-linked tyrosinate of GO, supporting the fact that both copper(I) and copper(II) activate the enzyme.  相似文献   

15.
Heme-Cu/O2 adducts are of interest in the elucidation of the fundamental metal-O2 chemistry occurring in heme-Cu enzymes which effect reductive O-O cleavage of dioxygen to water. In this report, the chemistry of four heme-peroxo-copper [FeIII-(O22-)-CuII]+ complexes (1-4), varying in their ligand architecture, copper-ligand denticity, or both and thus their structures and physical properties are compared in their reactivity toward CO, PPh3, acids, cobaltocene, and phenols. In 1 and 2, the copper(II) ligand is N4-tetradentate, and the peroxo unit is bound side-on to iron(III) and end-on to the copper(II). In contrast, 3 and 4 contain a N3-tridentate copper(II) ligand, and the peroxo unit is bound side-on to both metal ions. CO "displaces" the peroxo ligand from 2-4 to form reduced CO-FeII and CO-CuI species. PPh3 reacts with 3 and 4 displacing the peroxide ligand from copper, forming (porphyrinate)FeIII-superoxide plus CuI-PPh3 species. Complex 2 does not react with PPh3, and surprisingly, 1 reacts neither with PPh3 nor CO, exhibiting remarkable stability toward these reagents. The behavior of 1 and 2 compared to that of 3 and 4 correlates with the different denticity of the copper ligand (tetra vs tridentate). Complexes 1-4 react with HCl releasing H2O2, demonstrating the basic character of the peroxide ligand. Cobaltocene causes the two-electron reduction of 1-4 giving the corresponding micro-oxo [FeIII-(O2-)-CuII]+ complexes, in contrast to the findings for other heme-peroxo-copper species of different design. With t-butyl-substituted phenols, no reaction occurs with 1-4. The results described here emphasize how ligand design and variations influence and control not only the structure and physical properties but also the reactivity patterns for heme-Cu/O2 adducts. Implications for future investigations of protonated heme/Cu-peroxo complexes, low-spin analogues, and ultimately O-O cleavage chemistry are discussed.  相似文献   

16.
This paper describes the preparation of [Cu(bh)(2)(H(2)O)(2)](NO(3))(2)], [Cu(ibh)(2)(NO(3))(2)], [Cu(ibh)(2)(H(2)O)(2)](NO(3))(2) and [Cu(iinh)(2)(NO(3))(2)] (bh=benzoyl hydrazine (C(6)H(5)CONHNH(2)); ibh=isonicotinoyl hydrazine (NC(5)H(4)CONHNH(2)); ibh=isopropanone benzoyl hydrazone (C(6)H(5)CONHN=C(CH(3))(2); iinh=isopropanone isonicotinoyl hydrazone (NC(5)H(4)CONHN=C(CH(3))(2)). These copper(II) complexes are characterized by elemental analyses, molar conductances, dehydration studies, ESR, IR and electronic spectral studies. The electronic and ESR spectra indicate that each complex exhibits a six-coordinate tetragonally distorted octahedral geometry in the solid state and in DMSO solution. The ESR spectra of most of the complexes are typically isotropic type at room temperature (300K) in solid state as well as in DMSO solution. However, all the complexes exhibit invariably axial signals at 77K in DMSO solution. The trend g(||)>g( perpendicular)>g(e,) observed in all the complexes suggests the presence of an unpaired electron in the [Formula: see text] orbital of the Cu(II). The bh and inh ligands bond to Cu(II) through the >CO and NH(2) groups whereas, ibh and iinh bond through >CO and >CN groups. The IR spectra of bh and ibh complexes also show HOH stretching and bending modes of coordinated water.  相似文献   

17.
Elemental sulfur (S8) reacts reversibly with the copper(I) complex [(TMPA')CuI](+) (1), where TMPA' is a TMPA (tris(2-pyridylmethyl)amine) analogue with a 6-CH2OCH3 substituent on one pyridyl ligand arm, affording a spectroscopically pure end-on bound disulfido-dicopper(II) complex [{(TMPA')Cu(II)}2(mu-1,2-S2(2-))](2+) (2) {nu(S-S) = 492 cm(-1); nu(Cu-S)sym = 309 cm(-1)}; by contrast, [(TMPA)Cu(I)(CH3CN)](+) (3)/S8 chemistry produces an equilibrium mixture of at least three complexes. The reaction of excess PPh3 with 2 leads to formal "release" of zerovalent sulfur and reduction of copper ion to give the corresponding complex [(TMPA')Cu(I)(PPh3)](+) (11) along with S=PPh3 as products. Dioxygen displaces the disulfur moiety from 2 to produce the end-on Cu2O2 complex, [{(TMPA')Cu(II)}2(mu-1,2-O2(2-)](2+) (9). Addition of the tetradentate ligand TMPA to 2 generates the apparently more thermodynamically stable [{(TMPA)Cu(II)}2(mu-1,2-S2(2-))](2+) (4) and expected mixture of other species. Bubbling 2 with CO leads to the formation of the carbonyl adduct [(TMPA')CuI(CO)](+) (8). Carbonylation/sulfur-release/CO-removal cycles can be repeated several times. Sulfur atom transfer from 2 also occurs in a near quantitative manner when it is treated with 2,6-dimethylphenyl isocyanide (ArNC), leading to the corresponding isothiocyanate (ArNCS) and [(TMPA')Cu(I)(CNAr)](+) (12). Complex 2 readily reacts with PhCH2Br: [{(TMPA')Cu(II)}2(mu-1,2-S(2)(2-)](2+) (2) + 2 PhCH2Br --> [{(TMPA')Cu(II)(Br)}2](2+) (6) + PhCH2SSCH2Ph. The unprecedented substrate reactivity studies reveal that end-on bound mu-1,2-disulfide-dicopper(II) complex 2 provides a nucleophilic S2(2-) moiety, in striking contrast to the electrophilic behavior of a recently described side-on bound mu-eta(2):eta(2)-disulfido-dicopper(II) complex, [{(N3)Cu(II)}(2)(mu-eta(2):eta(2)-S2(2-))](2+) (5) with tridentate N3 ligand. The investigation thus reveals striking analogies of copper/sulfur and copper/dioxygen chemistries, with regard to structure type formation and specific substrate reactivity patterns.  相似文献   

18.
Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperatures resulted in metal complexes of the type M(II)L, where M = Ni and Cu and H(2)L = a novel tetradentate ligand. These complexes are relevant to the active site of the copper enzymes galactose oxidase and glyoxal oxidase. Demetalation of Ni(II)L with gaseous hydrogen chloride in chloroform afforded the metal-free ligand H(2)L. Then by the reaction of H(2)L with Zn(CH(3)COO)(2)·2H(2)O in a 1:1 molar ratio in 1:2 chloroform/methanol, the complex Zn(II)L(CH(3)OH) was prepared. The three metal complexes and the prepared ligand were characterized by spectroscopic methods (IR, UV-vis, and NMR spectroscopy), X-ray crystallography, and DFT calculations. Electrochemically generated one-electron oxidized metal complexes [NiL](+), [CuL](+), and [ZnL(CH(3)OH)](+) and the metal-free ligand cation radical [H(2)L](+?) were studied by EPR/UV-vis-NIR and DFT calculations. These studies demonstrated the interaction between the metal ion and the phenoxyl radical.  相似文献   

19.
The hydrothermal reactions of CuSO4.5H2O, Na3VO4, 2,2':6':2'-terpyridine (terpy), and the appropriate organophosphonate ligand yield a series of materials of the Cu(ii)-terpy/oxovanadium organophosphonate family. The complexes exhibit distinct structures spanning one-, two- and three-dimensions and exhibiting diverse oxovanadium building blocks. Thus, [{Cu(terpy)}(V2O4)(O3PPh)(HO3PPh)2] (1) is one-dimensional and constructed from binuclear units of corner-sharing V(v) square pyramids. While [{Cu(terpy)}VO(O3PCH2PO3)] (2), [{Cu(terpy)}2(V4O10)(O3PCH2CH2PO3)] (3), and [{Cu(terpy)}(V2O4){O3P(CH2)3PO3}].2.5H(2)O (4.2.5H2O) are similarly one-dimensional, the V/O structural components consist of isolated V(iv) square pyramids, tetranuclear V(v) units of three tetrahedra and one square pyramid in a corner-sharing arrangement, and isolated V(v) tetrahedra and square pyramids, respectively. The second propylenediphosphonate derivative, [{Cu(terpy)}(V2O4){O3P(CH2)3PO3}] (5) is three-dimensional and exhibits isolated V(v) tetrahedra as the vanadate component. The two-dimensional structure of [{Cu(terpy)(H2O)}(V3O6){O3P(CH2)4PO3}] (6) is mixed valence with isolated V(iv) square pyramids and binuclear units of corner-sharing V(v) tetrahedra providing the V/O substructures.  相似文献   

20.
The weak-link approach has been employed to synthesize a series of bimetallic Cu(I) macrocycles in high yield. Addition of phosphinoalkylether or -thioether ligands to [Cu(MeCN)4]PF6 produces "condensed" intermediates, [mu-(1,4-(PPh2CH2CH2X)2Y)2Cu2][PF6]2 (X = S, O; Y = C6H4, C6F4), containing strong P-Cu bonds and weaker O-Cu or S-Cu bonds. The weak bonds of these intermediates can be cleaved through ligand substitution reactions to generate macrocyclic structures, [mu-(1,4-(PPh2CH2CH2X)2Y)2(Z)nCu2][PF6]2 (X = S, O; Y = C6H4, C6F4; Z = pyridine, acetonitrile, diimines, isocyanide) in nearly quantitative yields. The incorporation of tetrahedral Cu(I) metal centers into these macrocycles provides a pathway to complexes that differ from analogous d8 square planar macrocycles generated via this approach in their increased air stability, small molecule reactivity, and ability to form multiple structural isomers. Solid-state structures, as determined by single-crystal X-ray diffraction studies, are presented for condensed intermediates and an open macrocycle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号