首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Potential biological and medical applications of organometallic complexes are hampered by a lack of knowledge of their aqueous solution chemistry. We show that the hydrolytic and aqueous solution chemistry of half-sandwich OsII arene complexes of the type [(eta6-arene)Os(XY)Cl] can be tuned with XY chelating ligands to achieve cancer cell cytoxicity comparable to carboplatin. Complexes containing arene = p-cymene, XY = N,O-chelating ligands glycinate (1), L-alaninate (2), alpha-aminobutyrate (3), beta-alaninate (4), picolinate (5), or 8-hydroxyquinolinate (7) were synthesized. Although, 1-4 and 7 hydrolyzed rapidly (相似文献   

2.
Relatively little is known about the kinetics or the pharmacological potential of organometallic complexes of osmium compared to its lighter congeners, iron and ruthenium. We report the synthesis of seven new complexes, [(eta6-arene)Os(NN)Cl]+, containing different bidentate nitrogen (N,N) chelators, and a dichlorido complex, [(eta6-arene)Os(N)Cl2]. The X-ray crystal structures of seven complexes are reported: [(eta6-bip)Os(en)Cl]PF6 (1PF6), [(eta6-THA)Os(en)Cl]BF4 (2BF4), [(eta6-p-cym)Os(phen)Cl]PF6 (5PF6), [(eta6-bip)Os(dppz)Cl]PF6 (6PF6), [(eta6-bip)Os(azpy-NMe2)Cl]PF6 (7PF6), [(eta6-p-cym)Os(azpy-NMe2)Cl]PF6 (8PF6), and [(eta6-bip)Os(NCCH3-N)Cl2] (9), where THA = tetrahydroanthracene, en = ethylenediamine, p-cym = p-cymene, phen = phenanthroline, bip = biphenyl, dppz = [3,2-a: 2',3'-c]phenazine and azpy-NMe2 = 4-(2-pyridylazo)-N,N-dimethylaniline. The chelating ligand was found to play a crucial role in enhancing aqueous stability. The rates of hydrolysis at acidic pH* decreased when the primary amine N-donors (NN = en, t1/2 = 0.6 h at 318 K) are replaced with pi-accepting pyridine groups (e.g., NN = phen, t1/2 = 9.5 h at 318 K). The OsII complexes hydrolyze up to 100 times more slowly than their RuII analogues. The pK*a of the aqua adducts decreased with a similar trend (pK*a = 6.3 and 5.8 for en and phen adducts, respectively). [(eta6-bip)Os(en)Cl]PF6/BF4 (1PF6/BF4) and [(eta6-THA)Os(en)Cl]BF4 (2BF4) were cytotoxic toward both the human A549 lung and A2780 ovarian cancer cell lines, with IC50 values of 6-10 microM, comparable to the anticancer drug carboplatin. 1BF4 binds to both the N7 and phosphate of 5'-GMP (ratio of 2:1). The formation constant for the 9-ethylguanine (9EtG) adduct [(eta6-bip)M(en)(9EtG)]2+ was lower for OsII (log K = 3.13) than RuII (log K = 4.78), although the OsII adduct showed some kinetic stability. DNA intercalation of the dppz ligand in 6PF6 may play a role in its cytotoxicity. This work demonstrates that the nature of the chelating ligand can play a crucial role in tuning the chemical and biological properties of [(eta6-arene)Os(NN)Cl]+ complexes.  相似文献   

3.
The Os(II) arene ethylenediamine (en) complexes [(eta(6)-biphenyl)Os(en)Cl][Z], Z = BPh(4) (4) and BF(4) (5), are inactive toward A2780 ovarian cancer cells despite 4 being isostructural with an active Ru(II) analogue, 4R. Hydrolysis of 5 occurred 40 times more slowly than 4R. The aqua adduct 5A has a low pK(a) (6.3) compared to that of [(eta(6)-biphenyl)Ru(en)(OH(2))](2+) (7.7) and is therefore largely in the hydroxo form at physiological pH. The rate and extent of reaction of 5 with 9-ethylguanine were also less than those of 4R. We replaced the neutral en ligand by anionic acetylacetonate (acac). The complexes [(eta(6)-arene)Os(acac)Cl], arene = biphenyl (6), benzene (7), and p-cymene (8), adopt piano-stool structures similar to those of the Ru(II) analogues and form weak dimers through intermolecular (arene)C-H...O(acac) H-bonds. Remarkably, these Os(II) acac complexes undergo rapid hydrolysis to produce not only the aqua adduct, [(eta(6)-arene)Os(acac)(OH(2))](+), but also the hydroxo-bridged dimer, [(eta(6)-arene)Os(mu(2)-OH)(3)Os(eta(6)-arene)](+). The pK(a) values for the aqua adducts 6A, 7A, and 8A (7.1, 7.3, and 7.6, respectively) are lower than that for [(eta(6)-p-cymene)Ru(acac)(OH(2))](+) (9.4). Complex 8A rapidly forms adducts with 9-ethylguanine and adenosine, but not with cytidine or thymidine. Despite their reactivity toward nucleobases, complexes 6-8 were inactive toward A549 lung cancer cells. This is attributable to rapid hydrolysis and formation of unreactive hydroxo-bridged dimers which, surprisingly, were the only species present in aqueous solution at biologically relevant concentrations. Hence, the choice of chelating ligand in Os(II) (and Ru(II)) arene complexes can have a dramatic effect on hydrolysis behavior and nucleobase binding and provides a means of tuning the reactivity and the potential for discovery of anticancer complexes.  相似文献   

4.
Mild electrophilic C(sp2)-H cyclometalation of 2-phenylpyridine and N,N-dimethylbenzylamine by the chloro-bridged osmium(II) dimer [OsCl(micro-Cl)(eta6-C6H6)]2 in acetonitrile affords cyclometalated pseudotetrahedral OsII complexes [Os(C approximately N)(eta6-C6H6)(NCMe)]PF6 (C approximately N=o-C6H4py-kappa C,N (2) and o-C6H4CH2NMe2-kappa C,N (5), respectively) in good to excellent yields. The cyclometalation reactions are super sensitive to the nature of an external base. Sodium hydroxide is essential for cyclometalation of 2-phenylpyridine, but NaOH retards metalation of N,N-dimethylbenzylamine, the tertiary amine being self-sufficient as a base. Further reactions of compounds 2 and 5 with 1,10-phenanthroline or 2,2'-bipyridine (N approximately N) lead to the substitution of the eta6-bound benzene to produce octahedral species [Os(C approximately N)(N approximately N)(NCMe)2]PF6 or [Os(C approximately N)(N approximately N)2]PF6 in MeCN or MeOH as solvent, respectively. The cis configuration of the MeCN ligands in [Os(C approximately N)(phen)(NCMe)2]PF6 has been confirmed by an X-ray crystallographic study. Electrochemical investigation of the octahedral osma(II)cycles by cyclic voltammetry showed a pseudoreversible MIII/II redox feature at (-50)-(+109) and 190-300 mV versus Ag/AgCl in water and MeCN, respectively. As a possible application of the compounds, a rapid electron exchange between the reduced active site of glucose oxidase enzyme from Aspergillus niger and the electrochemically generated OsIII species has been demonstrated. The corresponding second-order rate constants cover the range (0.7-4.8)x10(6) M(-1) s(-1) at 25 degrees C and pH 7.  相似文献   

5.
Hydrolysis of an organometallic cation, [Ru(η(6)-p-cym)(H(2)O)(3)](2+) (p-cym = 1-isopropyl-4-methylbenzene), in the presence of 0.20 M KNO(3) or KCl as supporting electrolyte was studied in detail with the combined use of pH-potentiometry, (1)H-NMR, UV-VIS and ESI-TOF-MS. Stoichiometry and stability constants of chlorido, hydroxido and mixed chlorido-hydroxido complexes formed in aqueous solution have been determined. At pH < 4.0 where hydrolysis of [Ru(η(6)-p-cym)(H(2)O)(3)](2+) is negligible with increasing chloride ion concentration two chlorido complexes, [Ru(η(6)-p-cym)(H(2)O)(2)Cl](+) and [{Ru(η(6)-p-cym)}(2)(μ(2)-Cl)(3)](+), are detectable. At pH > 5.0, in chloride ion free samples the exclusive formation of [{Ru(η(6)-p-cym)}(2)(μ(2)-OH)(3)](+) is found. However, if chloride ion is present (in the range 0-3.50 M) novel mixed chlorido-hydroxido species, [{Ru(η(6)-p-cym)}(2)(μ(2)-OH)(2)(μ(2)-Cl)](+) and [{Ru(η(6)-p-cym)}(2)(μ(2)-OH)(μ(2)-Cl)(2)](+) can also be identified at pH > 4.0. The results obtained in this study may help in rationalizing the solution behaviour of half-sandwich [Ru(η(6)-p-cym)(XY)Z] type complexes which, after dissociation of both the monodentate Z and the chelating XY, are capable of yielding the free aqua species [Ru(η(6)-p-cym)(H(2)O)(3)](2+). Our results demonstrate that different chloride ion concentrations can influence the speciation in the acidic pH range but at biologically relevant conditions (pH = 7.4, c(Cl(-)) = 0.16 M) and at c(M) = 1 μM [{Ru(η(6)-p-cym)}(2)(μ(2)-OH)(3)](+) is predominant in the absence of any coordinating ligands.  相似文献   

6.
The new pro-ligand 4-methyl-4'-(carbonylamino(2-(tert-butoxycarbonylamino)ethyl))-2,2'-bipyridyl (L1) has been prepared and used to synthesise the complex fac-Re(I)Cl(CO)3(L1) 1 and the complex salts [M(II)(bipy)2(L1)](PF6)2 (M=RuII 8 or OsII 15). Deprotection with trifluoroacetic acid affords the amine-functionalised derivatives fac-Re(I)Cl(CO)3(L2) 2, [M(II)(bipy)2(L2)](PF6)2 (M=RuII 9 or OsII 16) which react with the dianhydride of diethylenetriamine pentaacetic acid (DTPA) to give the binuclear complex {fac-Re(I)Cl(CO)3}2(L3) 3 and the complex salts [{M(II)(bipy)2}2(L3)](PF6)4 (M = RuII 10 or OsII 17). The latter react with salts Ln(OTf)3 to afford a series of 12 heterotrimetallic compounds that contain a lanthanide (Ln) ion in the DTPA binding site; {fac-Re(I)Cl(CO)3}2(L3)LnIII (Ln=Nd 4, Er 5, Yb 6 or Y 7) and [{M(II)(bipy)2}2(L3)LnIII](PF6)(OTf)3 (M=RuII, Ln=Nd 11, Er 12, Yb 13 or Y 14; M=OsII, Ln=Nd 18, Er 19, Yb 20 or Y 21). All of these trimetallic species display absorption bands ascribed to metal-to-ligand charge-transfer (MLCT) excitations, and luminescence measurements show that these excited states can be used to sensitise near-infrared emission from LnIII (Ln=Nd, Er or Yb) ions. Single crystal X-ray structures of L1 and [RuII(bipy)2(L2H)](H2PO4)3.(CH3)2CO.0.8H2O were obtained, the latter revealing the presence of H2PO4- counter anions, the source of which is presumed to be hydrolysis of PF6- ions.  相似文献   

7.
New Ru(II) and Os(II) derivatives of the monovacant [alpha-PW(11)O(39)](7-) anion ([PW(11)O(39){M(DMSO)(3)(H(2)O)}](5-) (M = Ru (1), Os (2)) and [PW(11)O(39){Os(eta(6)-p-cym)(H(2)O)}](5-) (3)) have been synthesized and characterized. The binding mode of the d(6)-{M(II)L(3)(H(2)O)}(2+) moieties in these compounds is similar to that in the previously described [PW(11)O(39){Ru(eta(6)-p-cym)(H(2)O)}](5-) (4) complex: bidentate, on two nonequivalent oxygen atoms of the lacuna, leading to a loss of the C(s) symmetry of the parent anion, which thus plays the role of a prochiral bidentate ligand. The density functional theory (DFT) (B3PW91) computation of the lowest unoccupied molecular orbitals of the {ML(3)(H(2)O)}(2+) (M = Os, Ru; L(3) = fac-(DMSO)(3), eta(6)-C(6)H(6)) fragments reveals the similarities between their electrophilic properties. The origin of the regioselectivity of the grafting was investigated through a DFT (B3PW91) analysis of (i) the highest occupied molecular orbital of [alpha-PW(11)O(39)](7-) and (ii) the relative energies of the different potential regioisomers obtained by a bidentate grafting of the {ML(3)(H(2)O)}(2+) moiety onto the lacuna of [alpha-PW(11)O(39)](7-). The role of the water ligand in the stabilization of this peculiar structure was studied.  相似文献   

8.
The known Os(IV)-cyanoimido complexes, mer-Et4N[OsIV(bpy)(Cl)3(NalphaCNbeta)] (mer-[OsIV=N-CN]-) (bpy = 2,2'-bipyridine) and trans-[OsIV(tpy)(Cl)2(NalphaCNbeta)] (trans-[OsIV=N-CN]) (2,2':6',2' '-terpyridine), have formal electronic relationships with high oxidation state Ru and Os-oxo and -dioxo complexes. These include multiple bonding to the metal, the ability to undergo multiple electron transfer, and the availability of nonbonding electron pairs for donation. Thermodynamic, oxo-like behavior is observed for mer-[OsIV=N-CN]- in the pH-dependence of its Os(VI/V) to Os(III/II) redox couples in 1:1 (v/v) CH3CN:H2O. Oxo-like behavior is also observed in the reaction between mer-[OsVI(bpy)(Cl)3(NalphaCNbeta)]PF6 and benzyl alcohol to give mer-[OsIV(bpy)(Cl)3(NalphaCNbetaH2)]PF6 and benzaldehyde. The reaction is first order in each reactant with kbenzyl(CH3CN, 25.0 +/- 0.1 degrees C) = (8.6 +/- 0.2) x 102 M-1 s-1. Formal NCN degrees transfer, analogous to O-atom transfer, occurs in reactions with tertiary phosphine and hexenes. In CH3CN under N2, a rapid reaction occurs between trans-[OsIV=N-CN] and PPh3 (kPPh3(DMF, 25.0 +/- 0.1 degrees C) = 4.06 +/- 0.02 M-1 s-1) to form the nitrilic N-bound Os(II)-(N-cyano)iminophosphorano product, trans-[OsII(tpy)(Cl)2(NalphaCNbetaPPh3)] (trans-[OsII-NalphaC-Nbeta=PPh3]). It undergoes solvolysis at 45 degrees C after 24 h to give trans-[OsII(tpy)(Cl)2(NCCH3)] and (N-cyano)iminophosphorane (NalphaC-Nbeta=PPh3). The analogue to epoxidation, N-cyanoaziridination of cyclohexene and 1-hexene by mer-[OsIV=N-CN]- and trans-[OsIV=N-CN], occurs at Nbeta to give the Os(IV)-N-cyanoaziridino complexes, mer-Et4N[OsII(bpy)(Cl)3(NalphaCNbetaC6H10)] and trans-[OsII(tpy)(Cl)2(NalphaCNbetaC6H11)], respectively. Oxidation to mer-[OsV(bpy)(Cl)3(NalphaCNbeta)]- greatly accelerates N-cyanoaziridination of cyclohexene, which is followed by slow solvolysis to give mer-[OsIII(bpy)(Cl)3(NCCH3)] and N-cyanoaziridine (NC-NC6H10). The Os-(N-cyano)aziridino complexes are the first well-characterized examples of coordinated cyanoaziridines.  相似文献   

9.
10.
The osma(II)cycles [Os(phpy)(LL)(2)]PF(6) (LL = 1,10-phen (3a) and 4,4'-Me(2)-2,2'-bpy (3b)) are made from [(eta(6)-C(6)H(6))Os(micro-Cl)Cl](2) (1) either via transmetalation using the [Hg(phpy)(2)] organomercurial in MeOH or via the sp(2)-C-H bond cleavage of 2-phenylpyridine (phpyH) in MeCN to afford [(eta(6)-C(6)H(6))Os(phpy)Cl] or [(eta(6)-C(6)H(6))Os(phpy)(MeCN)]PF(6), respectively. The latter two react cleanly with LL to give 3a and 3b, the M(II/III) redox potentials of which equal 30 and -100 mV (vs Ag/AgCl), respectively. The electrochemically made Os(III) species oxidize rapidly reduced glucose oxidase. The second-order rate constant equals 1.1 x 10(7) M(-)(1) s(-)(1) for 3a at 25 degrees C, pH 7.  相似文献   

11.
The reactions of [Tl(2)[S(2)C=C[C(O)Me](2)]](n) with [MCl(2)(NCPh)(2)] and CNR (1:1:2) give complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)(2)] [R = (t)Bu, M = Pd (1a), Pt (1b); R = C(6)H(3)Me(2)-2,6 (Xy), M = Pd (2a), Pt (2b)]. Compound 1b reacts with AgClO(4) (1:1) to give [[Pt(CN(t)Bu)(2)](2)Ag(2)[mu(2),eta(2)-(S,S')-[S(2)C=C[C(O)Me](2)](2)]](ClO(4))(2) (3). The reactions of 1 or 2 with diethylamine give mixed isocyanide carbene complexes [M[eta(2)-S(2)C=C[C(O)Me](2)](CNR)[C(NEt(2))(NHR)]] [R = (t)Bu, M = Pd (4a), Pt (4b); R = Xy, M = Pd (5a), Pt (5b)] regardless of the molar ratio of the reagents. The same complexes react with an excess of ammonia to give [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)](CN(t)Bu)[C(NH(2))(NH(t)Bu)]] [M = Pd (6a), Pt (6b)] or [M[eta(2)-(S,S')-S(2)C=C[C(O)Me](2)][C(NH(2))(NHXy)](2)] [M = Pd (7a), Pt (7b)] probably depending on steric factors. The crystal structures of 2b, 4a, and 4b have been determined. Compounds 4a and 4b are isostructural. They all display distorted square planar metal environments and chelating planar E,Z-2,2-diacetyl-1,1-ethylenedithiolato ligands that coordinate through the sulfur atoms.  相似文献   

12.
The previously synthesised Schiff-base ligands 2-(2-Ph(2)PC(6)H(4)N[double bond, length as m-dash]CH)-R'-C(6)H(3)OH (R'= 3-OCH(3), HL(1); 5-OCH(3), HL(2); 5-Br, HL(3); 5-Cl, HL(4)) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino)aniline with the appropriate substituted salicylaldehyde. HL(1-4) react directly with M(II)Cl(2)(M = Pd, Pt) or Pt(II)I(2)(cod) affording neutral square-planar complexes of general formula [M(II)Cl(eta(3)-L(1-4))](M = Pd, Pt, 1-8) and [Pt(II)I(eta(3)-L(1-4))](M = Pd, Pt, 9-12). Reaction of complexes 1-4 with the triarylphosphines PR(3)(R = Ph, p-tolyl) gave the novel ionic complexes [Pd(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(13-20). Substituted platinum complexes of the type [Pt(II)(PR(3))(eta(3)-L(1-4))]ClO(4)(R = P(CH(2)CH(2)CN)(3)21-24) and [Pt(II)(P(p-tolyl)(3))(eta(3)-L(3,4))]ClO(4)( 25 and 26 ) were synthesised from the appropriate [Pt(II)Cl(eta(3)-L(1-4))] complex (5-8) and PR(3). The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O,N,P donor set together with one further atom which is trans to the central nitrogen atom.  相似文献   

13.
The organometallic anticancer complex [(eta6-bip)Ru(en)Cl]+ (1; bip = biphenyl, en = ethylenediamine) selectively binds to guanine (N7) bases of DNA (Novakova, O.; Chen, H.; Vrana, O.; Rodger, A.; Sadler, P. J.; Brabec, V. Biochemistry 2003, 42, 11544-11554). In this work, competition between the tripeptide glutathione (gamma-L-Glu-L-Cys-Gly; GSH) and guanine (as guanosine 3',5'-cyclic monophosphate, cGMP) for complex 1 was investigated using HPLC, LC-MS and 1H,15N NMR spectroscopy. In unbuffered solution (pH ca. 3), the reaction of 1 with GSH gave rise to three intermediates: an S-bound thiolato adduct [(eta6-bip)Ru(en)(GS-S)] (4) and two carboxylate-bound glutathione products [(eta6-bip)Ru(en)(GSH-O)]+ (5, 6) during the early stages (<6 h), followed by en displacement and formation of a tri-GS-bridged dinuclear Ru(II) complex [((eta6-bip)Ru)2(GS-mu-S)3]2- (7). Under physiologically relevant conditions (micromolar Ru concentrations, pH 7, 22 mM NaCl, 310 K), the thiolato complex 4 was unexpectedly readily oxidized by dioxygen to the sulfenato complex [(eta6-bip)Ru(en)(GS(O)-S)] (8) instead of forming the dinuclear complex 7. Under these conditions, competitive reaction of complex 1 with GSH and cGMP gave rise to the cGMP adduct [(eta6-bip)Ru(en)(cGMP-N7)]+ (10) as the major product, accounting for ca. 62% of total Ru after 72 h, even in the presence of a 250-fold molar excess of GSH. The oxidation of coordinated glutathione in the thiolato complex 4 to the sulfenate in 8 appears to provide a facile route for displacement of S-bound glutathione by G N7. Redox reactions of cysteinyl adducts of these Ru(II) arene anticancer complexes could therefore play a significant role in their biological activity.  相似文献   

14.
A series of (eta 6-arene)OsII complexes containing the saturated nitrogen donor ligands tmtacn, tacn, and NH3 are prepared and characterized. The electrochemical properties and photochemical reactions of these complexes are studied, and the solid-state structures for [(eta 6-p-cymene)Os(tacn)](PF6)2 (1) and [(eta 6-p-cymene)Os(tmtacn)](PF6)2 (2) are determined. Single-crystal X-ray data: 1, orthorhombic, space group Pbca-D2h15 (No. 61), with a = 14.716(3) A, b = 17.844(3) A, c = 18.350(4) A, V = 4819(2) A3, and Z = 8; 2, monoclinic, space group C2-C2(3) (No. 5), with a = 17.322(4) A, b = 10.481(3) A, c = 15.049(4) A, beta = 98.72 degrees, V = 2701(1) A3, and Z = 4.  相似文献   

15.
Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.  相似文献   

16.
The complexes of general formulas [RuII(terpy)(4-CO2H-4'-Mebpy)(X)]n+ (X = NO (n = 3) and NO2 (n = 1); 1, 2) and [RuII(terpy)(4-COGHK-4'-Mebpy)(X)] (X = NO (n = 3) and NO2 (n = 1); 3, 4) were synthesized and characterized. The complex [RuII(terpy)(4-CO2-4'-Mebpy)(NO2)]_7.5H2O has also been characterized by X-ray crystallographic studies. It crystallizes in the triclinic system: a = 9.4982(1) A, b = 13.1330(1) A, c = 14.2498(2) A; alpha = 110.5870(6) x bc, beta = 98.4048(5) x bc, gamma = 106.4353(5), P1, Z = 2. The crystal structure reveals an extended hydrogen-bonding network. Two water molecules form strong hydrogen bonds with the nitro and the carboxylic oxygen atoms of two separate units of the complex, resulting in a dimeric unit. The dimers are bridged by a (H2O)15 cluster, consisting of two cyclo-(H2O)6 species, while an exo-H2O(8) connects them. Two more exo-H2O molecules are joined together and connect the cyclo-(H2O)6 units with the H2O(1) of the dimeric unit. It was found that complexes 1 and 3 can be transformed into their nitro derivatives in aqueous media at neutral pH. Photorelease of NO in dry MeCN solutions was observed for complexes 1 and 3. Also, complex 2 partially releases (NO2)- in MeCN upon visible light irradiation. Complex 2 interacts with short fragments (70-300 bp) of calf thymus DNA shortening slightly the apparent polynucleotide length, while the conjugation of the peptide GHK to it (2) affects its DNA-binding mode. The peptide moiety of complex 4 was found to interact with the DNA helix in a synergistic way with the whole complex. Preliminary results of photocleavage of DNA by complex 2 are also reported.  相似文献   

17.
Ru(II) eta6-arene complexes containing p-cymene (p-cym), tetrahydronaphthalene (thn), benzene (bz), or biphenyl (bip), as the arene, phenylazopyridine derivatives (C5H4NN:NC6H5R; R = H (azpy), OH (azpy-OH), NMe2 (azpy-NMe2)) or a phenylazopyrazole derivative (NHC3H2NN:NC6H5NMe2 (azpyz-NMe2)) as N,N-chelating ligands and chloride as a ligand have been synthesized (1-16). The complexes are all intensely colored due to metal-to-ligand charge-transfer Ru 4d6-pi* and intraligand pi -->pi* transitions (eta = 5000-63 700 M-1 cm-1) occurring in the visible region. In the crystal structures of [(eta6-p-cym)Ru(azpy)Cl]PF6 (1), [(eta6-p-cym)Ru(azpy-NMe2)Cl]PF6 (5), and [(eta6-bip)Ru(azpy)Cl]PF6 (4), the relatively long Ru-N(azo) and Ru-(arene-centroid) distances suggest that phenylazopyridine and arene ligands can act as competitive pi-acceptors toward Ru(II) 4d6 electrons. The pKa* values of the pyridine nitrogens of the ligands are low (azpy 2.47, azpy-OH 3.06 and azpy-NMe2 4.60), suggesting that they are weak sigma-donors. This, together with their pi-acceptor behavior, serves to increase the positive charge on ruthenium, and together with the pi-acidic eta6-arene, partially accounts for the slow decomposition of the complexes via hydrolysis and/or arene loss (t(1/2) = 9-21 h for azopyridine complexes, 310 K). The pKa* of the coordinated water in [(eta6-p-cym)Ru(azpyz-NMe2)OH2]2+ (13A) is 4.60, consistent with the increased acidity of the ruthenium center upon coordination to the azo ligand. None of the azpy complexes were cytotoxic toward A2780 human ovarian or A549 human lung cancer cells, but several of the azpy-NMe2, azpy-OH, and azpyz-NMe2 complexes were active (IC50 values 18-88 microM).  相似文献   

18.
Organometallic ruthenium(II) arene anticancer complexes of the type [(eta(6)-arene)Ru(II)(en)Cl][PF(6)] (en = ethylenediamine) specifically target guanine bases of DNA oligomers and form monofunctional adducts (Morris, R., et al. J. Med. Chem. 2001). We have determined the structures of monofunctional adducts of the "piano-stool" complexes [(eta(6)-Bip)Ru(II)(en)Cl][PF(6)] (1, Bip = biphenyl), [(eta(6)-THA)Ru(II)(en)Cl][PF(6)] (2, THA = 5,8,9,10-tetrahydroanthracene), and [(eta(6)-DHA)Ru(II)(en)Cl][PF(6)] (3, DHA = 9,10-dihydroanthracene) with guanine derivatives, in the solid state by X-ray crystallography, and in solution using 2D [(1)H,(1)H] NOESY and [(1)H,(15)N] HSQC NMR methods. Strong pi-pi arene-nucleobase stacking is present in the crystal structures of [(eta(6)-C(14)H(14))Ru(en)(9EtG-N7)][PF(6)](2).(MeOH) (6) and [(eta(6)-C(14)H(12))Ru(en)(9EtG-N7)][PF(6)](2).2(MeOH) (7) (9EtG = 9-ethylguanine). The anthracene outer ring (C) stacks over the purine base at distances of 3.45 A for 6 and 3.31 A for 7, with dihedral angles of 3.3 degrees and 3.1 degrees, respectively. In the crystal structure of [(eta(6)-biphenyl)Ru(en)(9EtG-N7)][PF(6)](2).(MeOH) (4), there is intermolecular stacking between the pendant phenyl ring and the purine six-membered ring at a distance of 4.0 A (dihedral angle 4.5 degrees). This stacking stabilizes a cyclic tetramer structure in the unit cell. The guanosine (Guo) adduct [(eta(6)-biphenyl)Ru(en)(Guo-N7)][PF(6)](2).3.75(H(2)O) (5) exhibits intramolecular stacking of the pendant phenyl ring with the purine five-membered ring (3.8 A, 23.8 degrees) and intermolecular stacking of the purine six-membered ring with an adjacent pendant phenyl ring (4.2 A, 23.0 degrees). These occur alternately giving a columnar-type structure. A syn orientation of arene and purine is present in the crystal structures 5, 6, and 7, while the orientation is anti for 4. However, in solution, a syn orientation predominates for all the biphenyl adducts 4, 5, and the guanosine 5'-monophosphate (5'-GMP) adduct 8 [(eta(6)-biphenyl)Ru(II)(en)(5'-GMP-N7)], as revealed by NMR NOE studies. The predominance of the syn orientation both in the solid state and in solution can be attributed to hydrophobic interactions between the arene and purine rings. There are significant reorientations and conformational changes of the arene ligands in [(eta(6)-arene)Ru(II)(en)(G-N7)] complexes in the solid state, with respect to those of the parent chloro-complexes [(eta(6)-arene)Ru(II)(en)Cl](+). The arene ligands have flexibility through rotation around the arene-Ru pi-bonds, propeller twisting for Bip, and hinge-bending for THA and DHA. Thus propeller twisting of Bip decreases by ca. 10 degrees so as to maximize intra- or intermolecular stacking with the purine ring, and stacking of THA and DHA with the purine is optimized when their tricyclic ring systems are bent by ca. 30 degrees, which involves increased bending of THA and a flattening of DHA. This flexibility makes simultaneous arene-base stacking and N7-covalent binding compatible. Strong stereospecific intramolecular H-bonding between an en NH proton oriented away from the arene (en NH(d)) and the C6 carbonyl of G (G O6) is present in the crystal structures of 4, 5, 6, and 7 (average N...O distance 2.8 A, N-H...O angle 163 degrees ). NMR studies of the 5'-GMP adduct 8 provided evidence that en NH(d) protons are involved in strong H-bonding with the 5'-phosphate and O6 of 5'-GMP. The strong H-bonding from G O6 to en NH(d) protons partly accounts for the high preference for binding of [(eta(6)-arene)Ru(II)en](2+) to G versus A (adenine). These studies suggest that simultaneous covalent coordination, intercalation, and stereospecific H-bonding can be incorporated into Ru(II) arene complexes to optimize their DNA recognition behavior, and as potential drug design features.  相似文献   

19.
Five new tetrametallic supramolecules of the motif [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) and three new trimetallic light absorbers [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) (TL = bpy = 2,2'-bipyridine or phen = 1,10-phenanthroline; M = Ru(II) or Os(II); BL = dpp = 2,3-bis(2-pyridyl)pyrazine, dpq = 2,3-bis(2-pyridyl)quinoxaline, or bpm = 2,2'-bipyrimidine) were synthesized and their redox, spectroscopic, and photophysical properties investigated. The tetrametallic complexes couple a Pt(II)-based reactive metal center to Ru and/or Os light absorbers through two different polyazine BL to provide structural diversity and interesting resultant properties. The redox potential of the M(II/III) couple is modulated by M variation, with the terminal Ru(II/III) occurring at 1.58-1.61 V and terminal Os(II/III) couples at 1.07-1.18 V versus Ag/AgCl. [{(TL)(2)M(dpp)}(2)Ru(BL)](PF(6))(6) display terminal M(dπ)-based highest occupied molecular orbitals (HOMOs) with the dpp(π*)-based lowest unoccupied molecular orbital (LUMO) energy relatively unaffected by the nature of BL. The coupling of Pt to the BL results in orbital inversion with localization of the LUMO on the remote BL in the tetrametallic complexes, providing a lowest energy charge separated (CS) state with an oxidized terminal Ru or Os and spatially separated reduced BL. The complexes [{(TL)(2)M(dpp)}(2)Ru(BL)](6+) and [{(TL)(2)M(dpp)}(2)Ru(BL)PtCl(2)](6+) efficiently absorb light throughout the UV and visible regions with intense metal-to-ligand charge transfer (MLCT) transitions in the visible at about 540 nm (M = Ru) and 560 nm (M = Os) (ε ≈ 33,000-42,000 M(-1) cm(-1)) and direct excitation to the spin-forbidden (3)MLCT excited state in the Os complexes about 720 nm. All the trimetallic and tetrametallic Ru-based supramolecular systems emit from the terminal Ru(dπ)→dpp(π*) (3)MLCT state, λ(max)(em) ≈ 750 nm. The tetrametallic systems display complex excited state dynamics with quenching of the (3)MLCT emission at room temperature to populate the lowest-lying (3)CS state population of the emissive (3)MLCT state.  相似文献   

20.
A series of dinuclear metal terpyridine (M-tpy; M = Ru, Os, Fe, and Co) complexes with a photochromic dithienylethene bridge were designed and synthesized through either a convergent or a divergent approach. The open forms of the complexes containing RuII and FeII centers were found to be inert to ultraviolet photoirradiation but could be cyclized electrochemically as revealed by a cyclic voltammetric study. On the contrary, the CoII complex underwent efficient photochemical but not electrochemical cyclization. The corresponding OsII complex was neither photochromic nor electrochromic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号