首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid development of protein-based pharmaceuticals highlights the need for robust analytical methods to ensure their quality and stability. Among proteins used in pharmaceutical applications, an important and ever increasing role is represented by monoclonal antibodies and large proteins, which are often modified to enhance their activity or stability when used as drugs. The bioactivity and the stability of those proteins are closely related to the maintenance of their complex structure, which however are influenced by many external factors that can cause degradation and/or aggregation. The presence of aggregates in these drugs could reduce their bioactivity and bioavailability, and induce immunogenicity. The choice of the proper analytical method for the analysis of aggregates is fundamental to understand their (size) dimensional range, their amount, and if they are present in the sample as generated by an aggregation or as an artifact due to the method itself. Size exclusion chromatography is one of the most important techniques for the quality control of pharmaceutical proteins; however, its application is limited to relatively low molar mass aggregates. Among the techniques for the size characterization of proteins, field-flow fractionation (FFF) represents a competitive choice because of its soft mechanism due to the absence of a stationary phase and application in a broader size range, from nanometer- to micrometer-sized analytes. In this paper, the microcolumn variant of FFF, the hollow-fiber flow FFF, was online coupled with multi-angle light scattering, and a method for the characterization of aggregates with high reproducibility and low limit of detection was demonstrated employing an avidin derivate as sample model.
Figure
HF5-UV-MALS of therapeutic proteins: aggregation study  相似文献   

2.
Use of instrumentation developed to enable simultaneous monitoring of optical rotation (OR) and transmittance allows OR measurements to be made in the presence of high levels of absorbance, scattering or other effects that change the intensity of the plane-polarised light at the photodiode detector. This extends the application of OR detection to areas where it was previously difficult. Examples of the application of high-performance liquid chromatography (HPLC) with the improved OR detector include (i) the analytical scale separation of fructose and sucrose and (ii) the semi-preparative separation of enantiomers of warfarin and Tr?gers base. A signal-to-noise improvement of up to 150% is found when comparing signals with and without correction for transmittance changes. The improved OR detector has been used in series with a UV detector and the system shown to be suitable for on-line measurement of peak purity in separations using a chiral column under overload conditions.  相似文献   

3.
Surface-enhanced Raman scattering for protein detection   总被引:1,自引:0,他引:1  
Proteins are essential components of organisms and they participate in every process within cells. The key characteristic of proteins that allows their diverse functions is their ability to bind other molecules specifically and tightly. With the development of proteomics, exploring high-efficiency detection methods for large-scale proteins is increasingly important. In recent years, rapid development of surface-enhanced Raman scattering (SERS)-based biosensors leads to the SERS realm of applications from chemical analysis to nanostructure characterization and biomedical applications. For proteins, early studies focused on investigating SERS spectra of individual proteins, and the successful design of nanoparticle probes has promoted great progress of SERS-based immunoassays. In this review we outline the development of SERS-based methods for proteins with particular focus on our proposed protein-mediated SERS-active substrates and their applications in label-free and Raman dye-labeled protein detection. Figure Protein-mediated SERS-active substrates for protein detection  相似文献   

4.
A poly(dimethylsiloxane) (PDMS)-based biochip with an integrated pressure controlled positioning system with sub-micrometre precision was realized. The biochip was easy and cheap to manufacture and enabled positioning in a wet environment. It allowed the application of total internal reflection fluorescence (TIRF) microscopy at the dorsal cell membrane, which is not adhering to a support. Specifically, the chip enabled TIRF microscopy at the apical membrane of polarized epithelial cells. Thereby, the device allowed us for the first time to monitor individual fusion events of GPI-GFP bearing vesicles at the apical membrane in live Madin-Darby canine kidney II (MDCK II) cells. Moreover, a mapping of fusion sites became feasible and revealed that the whole apical membrane is fusion competent. In total, the biochip offers an all-in-one solution for apical TIRF microscopy and contributes a novel tool to study trafficking processes close to the apical plasma membrane in polarized epithelial cells.  相似文献   

5.
Effluent from a gel-permeation chromatographic column has been simultaneously and continuously monitored with a differential refractometer and a low-angle laser light-scattering (LALLS) photometer. This provides a true and direct determination of molecular weight distribution rather than through a calibration method as obtained by conventional GPC techniques. Computer assisted data reduction provides a rapid determination of M?w, M?n, M?z, M?w/M?n, as well as a plot of molecular weight distribution. Samples of very narrow molecular weight distribution (MWD) polystyrene from Pressure Chemicals Co. and relatively wide MWD samples of poly(methyl methacrylate) in chloroform have been characterized.  相似文献   

6.
7.
Dougan JA  Faulds K 《The Analyst》2012,137(3):545-554
The multiplexed detection of biological analytes from complex mixtures is of crucial importance for the future of intelligent management and detection of disease. This review focuses on recent advances in the use of surface enhanced Raman scattering (SERS) spectroscopy as an analytical technique that can deliver multiplexed detection for a variety of biological target in increasingly complex media. The use of SERS has developed from the multipelxed detection of custom dye molecules to biomolecules such as DNA and proteins. Recent work has also shown the capability of SERS multiplexing for in vivo as well as in vitro applications.  相似文献   

8.
Summary New approaches have been developed for the assessment of low levels of bioactive substances such as pesticides, organic and inorganic toxicants, as well as growth stimulating substances present in vegetation matrices. The new technology uses a laser /bacterial biossay which is capable off differentiating between various bioactive substances based on their mechanism of action, i.e., toxicity or nutritional fortification at the molecular/cellular level. The system uses a battery of isogeneic Bacillus subtilis mutant strains that were genetically constructed to respond differentially to specific toxicants. The response in terms of growth inhibition/stimulation is monitored by differential light scattering of a laser which is integrated with a computerized system that collects and analyzes the data. Making 1200 measurements on each sample set within 2 to 4 seconds, complete bioresponse data including concentration-related response is obtained on most samples within 60 min. By utilizing a non-toxic cocktail that was developed to solubilize and disperse water insoluble materials into an aqueous matrix, a number of pesticides including carbaryl, malation, chlorsulfuron, glyphosate, tributyltin, and beta-exotoxin could be assayed, specifically characterized, and their concentration directly correlated with the bioresponse of the bacterial strains. Since there was a differential response between mutant bacteria to each compound, a profile unique to each pesticide could be developed and stored in a software recognition library. Finally, the various pesticides could be detected in a vegetation matrix, e.g., citrus leaf, without using a chemical/physical extraction procedure. In addition, the effect of the leaf matrix on the bacterial response could be assessed. Thus, the laser-bacterial assay promises to be a rapid and inexpensive analytical tool for chemical assay in a complex matrix.  相似文献   

9.
10.
A simple and very sensitive capillary-liquid chromatography method coupled with laser induced fluorescence detection has been developed for the simultaneous determination of seven quinolones of veterinary use in milk. Moreover, a comparison between two different sample treatments (QuEChERS and molecularly imprinted polymer, MIP) has been carried out in terms of efficiency of the extraction (number of analytes to be analysed and absence of interferences), throughput, linear dynamic range in matrix-matches calibrations, detection and quantification limits and accuracy (trueness and precision, by means of recovery assays). The results showed that the QuEChERS procedure was more efficient and faster, showing good recoveries, sensitivity and precision for all the studied compounds. Employing this proposed method, very low detection limits, between 0.4 μg/kg for danofloxacin, and 6 μg/kg for sarafloxacin, have been obtained.  相似文献   

11.
Functional magnetic nanoparticles are prepared and characterized for protein detection in a magnetic separation channel. This detection method is based on a competitive immunoassay of magnetic separation in thin channels using functional magnetic nanoparticles. We used protein A–IgG complex to demonstrate the feasibility. Free IgG and fixed number of IgG-labeled microparticles were used to compete for limited sites of protein A on the magnetic nanoparticles. Several experimental parameters were investigated for protein detection. The deposited percentages of IgG-labeled microparticles at various concentrations of free IgG were determined and used as a reference plot. The IgG concentration in a sample was deduced and determined based on the reference plot using the deposited percentage of IgG-labeled microparticles from the sample. The linear range of IgG detection was from 5.0 × 10−8 to 1.0 × 10−11 M. The detection limit was 3.69 × 10−12 M. The running time was less than 10 min. Selectivities were higher than 92% and the relative errors were less than 7%. The IgG concentration of serum was determined to be 3.6 mg ml−1. This measurement differed by 8.3% from the ELISA measurement. The recoveries of IgG spiked in serum were found to be higher than 94%. This method can provide simple, fast, and selective analysis for protein detection and other immunoassay-related applications.  相似文献   

12.
Lu X  Luo Z  Liu C  Zhao S 《Journal of separation science》2008,31(16-17):2988-2993
An HPLC-resonance Rayleigh scattering (RRS) (HPLC-RRS) detection system is described for separation and detection of proteins. This system is based on the modification of a commercial HPLC instrument involving the addition of a pump and a T-shaped interface, and a common fluorescence detector was used for detection. The detection principle is based on the change of RRS intensity of the ion-association complex formed from biebrich scarlet (BS) and protein. The RRS signal was detected at lambdaex=lambdaem=376 nm. The utility of the presented method was demonstrated by the separation and determination of four proteins involving cytochrome (Cyt-c), lysozyme (Lys), HSA, and gamma-globulin (gamma-Glo). An LOD of 0.2-1.0 microg/mL was reached and a linear range was found between peak area and concentration in the range of 0.20-3.0 microg/mL for Cyt-c, 0.25-2.5 microg/mL for Lys, 1.5-10 microg/mL for HSA, and 2.0-15 microg/mL for gamma-Glo, with linear regression coefficients all above 0.99. The method presented has been applied to determine HSA and gamma-Glo in human serum samples synchronously.  相似文献   

13.
In this work, the chitosan ternary nanocomposites with two-dimensional (2D) clay platelets and one-dimensional (1D) CNTs have been successfully prepared by a simple solution-intercalation/mixing method in acid media. It was found that the thermal degradation temperature of chitosan (at 50% weight loss) could be only improved in about 20-30 °C by adding 3 wt% either clay or CNTs, however, almost 80 °C increase of degradation temperature could be achieved by adding 2 wt% clay and 1 wt% CNTs together. Dynamic mechanical measurement demonstrated an obviously improved storage modulus for chitosan/clay-CNTs than that for the corresponding binary chitosan/clay or chitosan/CNT nanocomposites with the same total filler content (3 wt%). For the solvent vapor permeation properties, a largely improved benzene vapor barrier property was observed only in chitosan/clay-CNT ternary nanocomposites and depended on the ratio of clay to CNTs. XRD, SEM and TEM results showed that both clay and CNTs could be well dispersed in the ternary nanocomposites with the nanotubes located around the clay platelets. FTIR showed an improved interaction between the fillers and chitosan by using both clay and CNTs. A much enhanced solid-like behavior was observed in the ternary nanocomposites, compared with the corresponding binary nanocomposites with the same total filler content, as indicated by rheological measurement. The unique synergistic effect of two-dimensional (2D) clay platelets and one-dimensional (1D) CNTs on the property enhancement could be tentatively understood as due to a formation of much jammed filler network with 1D CNTs and 2D clay platelets combined together. Our work demonstrates a good example for the preparation of high performance polymer nanocomposites by using nanofillers with different dimensions together.  相似文献   

14.
15.
The need for a rapid and sensitive chromatographic technique for analyzing lipid molecular species, has led to the development of an high-temperature micro liquid chromatographic system (HTLC) coupled to an evaporative light scattering detector. The increased diffusion coefficients and reduced viscosity at higher temperatures allowed lipids to be analyzed rapidly with solvents differing from those classically used in lipids chemistry. Hypercarb, a reverse phase material, was used for its different properties including heat resistance in high temperature micro HPLC. We have investigated the temperature effect on kinetic performances in HTLC, established pure solvents eluent strength at high temperature and studied different classes of lipids with seven pure solvents. We found that it was possible to use alcohols solvents in the mobile phase to elute lipids without the use of chlorinated solvents. A quick and simple method was developed to analyze a complex lipid simple, ceramide type III and type IV.  相似文献   

16.
U. Buck  V. Khare 《Chemical physics》1977,26(2):215-221
Total differential cross sections for collision between linear molecules and atoms are formulated and calculated in the framework of several approximations in the sudden limit in order to establish a practical method for a comparison with measured molecular beam data. The two extreme methods, the infinite order sudden and the first order linear trajectory approximation give results which differ by more than a factor of two in the anisotropy parameter. The origin of this difference lies mainly in the use of the linear trajectory. The infinite or first order treatment and the fixed or variable angle between the molecular axis and the atom during the collisions which are valid for the approximation, respectively, are only of minor influence on the result.  相似文献   

17.
After 20 years of development, evaporative light‐scattering detection (ELSD) has become the mainstream choice for the detection of various classes of natural products. ELSD continues to grow in popularity as a “quasi‐universal” technique because of the specificity of the detection method, which is based on the scattering of laser light from nonvolatile analyte particles. It represents an attractive alternative compared to other types of detection, such as refractive index detection and/or ultraviolet detection. This review presents issues concerned with the separation of carbohydrates in plant materials by HPLC and ELSD, as well as the advantages and limitations relating to the ELSD method. Additionally, an overview of possible ELSD applications in the analysis of carbohydrates in natural products is presented.  相似文献   

18.
By optimizing the extraction, separation, and analytical conditions, a reliable and accurate high-performance liquid chromatography method coupled with evaporative light scattering detection (ELSD) was developed for simultaneous determination of five terpenoids, i.e., triptolide, tripchlorolide, demethylzelastral, wilforlide B, and wilforlide A, in root, stem, leaves, root bark, twig, and root without bark of Tripterygium wilfordii Hook. f and six of its herbal preparations. This approach would thus provide a more accurate and general method for evaluating the quality of the herb and its preparations. Separation of these five terpenoids was achieved on a ZORBAX Eclipse XDB-C8 column with gradient elution using water and acetonitrile as solvents, both containing 0.05% formic acid, at a temperature of 30 degrees C and a flow rate of 0.8 mL/min. The drift tube temperature of ELSD was set at 100 degrees C, and the nitrogen flow rate at 1.5 L/min. Good linear relationships were obtained with correlation coefficients for the analytes exceeding 0.992, and the LOD and LOQ were less than 0.149 microg and 0.297 microg on column, respectively. Intra-day and inter-day precision of the analytes were less than 1.25% and 5.97%, respectively, and the average recovery rates obtained were in the range of 95.9 +/- 3.7% to 100.4 +/- 5.0% for all terpenoids with RSDs below 4.99%. Quantitative analysis of the five terpenoids in different parts of Tripterygium wilfordii and its six preparations showed that the contents of the terpenoids varied significantly. The tender root contained higher concentrations of triptolide, tripchlorolide, demethylzelastral, and wilforlide B than any other part of the herb. Correspondingly, the root bark contained the greatest concentration of wilforlide A, and the stem and twig came in second and third. This suggested that we could infer whether the medicinal materials were absolute roots without bark or not from the comparative contents of these terpenoids in the tablets in view of the fact that only the roots without bark are the valid officinal part of the plant. This method and the quantitation results obtained can provide a scientific and general as well as simple and convenient approach for the product manufacturers to set up quality control standards and for informing the public about the quality and safety of the preparations.  相似文献   

19.
Femtosecond laser was employed to fabricate nanostructured Ag surface for surface-enhanced Raman scattering (SERS) application. The prepared nanostructured Ag surface was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The FESEM images demonstrate the formation of nanostructure-covered femtosecond laser-induced periodic surface structure, also termed as ripples, on the Ag surface. The AFM images indicate that the surface roughness of the produced nanostructured Ag substrate is larger than the untreated Ag substrate. The XRD and XPS of the nanostructured Ag surface fabricated by femtosecond laser show a face centered cubic phase of metallic Ag and no impurities of Ag oxide species. The application of the produced nanostructured Ag surface in SERS was investigated by using rhodamine 6G (R6G) as a reference chemical. The SERS intensity of R6G in aqueous solution at the prepared nanostructured Ag surface is 15 times greater than that of an untreated Ag substrate. The Raman intensities vary linearly with the concentrations of R6G in the range of 10(-8)-10(-4)M. The present methodology demonstrates that the nanostructured Ag surface fabricated by femtosecond laser is potential for qualification and quantification of low concentration molecules.  相似文献   

20.
Han MJ  Hao J  Xu Z  Meng X 《Analytica chimica acta》2011,692(1-2):96-102
Surface-enhanced Raman scattering (SERS) has recently emerged as a promising method for chemical and biomolecular sensing. SERS quantification analysis of arsenate (As(V)) was investigated using multilayer Ag nanofilms deposited on glass slides as SERS-active substrates (Ag/GL substrates) by an electroless deposition process. The As(V) limit of detection (LOD) was determined to be ~5 μg L(-1) or lower with or without coexisting multiple background electrolytes (Na(+), K(+), Ca(2+), Mg(2+), Cl(-), NO(3)(-), SO(4)(2-) and H(2)PO(4)(-)). The presence of the background electrolytes at low concentrations was observed to enhance the SERS sensitivity of the substrate towards As(V) more than twofold. Standard calibration curves were prepared in the absence and presence of the background electrolytes. Excellent linear relationships between the peak heights of the As(V) SERS band at ~780 cm(-1) and the As(V) concentrations were obtained in a concentration range of 0-250 μg L(-1). The selectivity of the Ag nanofilm towards oxyanions was examined to be in the order of As(V)?phosphate?nitrate, sulphate. A low sample-to-sample relative standard deviation (RSD) of 5.2% was also determined, suggesting the Ag/GL substrate was uniform and highly reproducible. Experimental results indicated that the SERS method could be used for quantitative analysis of As(V) in groundwater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号