首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study theoretically examined colloid detachment from primary minima with ionic strength (IS) reduction on heterogeneous collector surfaces. The chemically and physically heterogeneous collector surfaces were modeled as a planar surface carrying nanoscale patches of different zeta potentials and nanoscale pillars/hemispheroids, respectively. The surface element integration technique was used to calculate interaction energies between colloid and collector surfaces. Two boundary conditions for the double-layer interaction energy were considered, namely constant surface potential (CSP), and linear superposition approximation (LSA). In contrast to prevailing opinions in the literature, our results show that colloids attached on the chemically heterogeneous surface cannot be detached by IS reduction under CSP condition due to an increase of the adhesive force/torque with decreasing IS. Detachment from chemically heterogeneous surfaces by IS reduction can occur under LSA condition only when the flow velocity is very high. In contrast, the presence of nanoscale physical heterogeneity can cause colloid detachment from primary minima by IS reduction under both CSP and LSA conditions at flow velocities commonly used in experimental studies because of a significant reduction in the adhesive forces/torques.  相似文献   

2.
Recent microfluidic experiments revealed that large particles advected in a fluidic loop display long-range hydrodynamic interactions. However, the consequences of such couplings on the traffic dynamics in more complex networks remain poorly understood. In this Letter, we focus on the transport of a finite number of particles in one-dimensional loop networks. By combining numerical, theoretical, and experimental efforts, we evidence that this collective process offers a unique example of Hamiltonian dynamics for hydrodynamically interacting particles. In addition, we show that the asymptotic trajectories are necessarily reciprocal despite the microscopic traffic rules explicitly break the time-reversal symmetry. We exploit these two remarkable properties to account for the salient features of the effective three-particle interaction induced by the exploration of fluidic loops.  相似文献   

3.
We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve.  相似文献   

4.
孟胜  王恩哥 《物理》2011,40(5):289-296
虽然水普遍存在,但人们在分子尺度上对水与固体表面的相互作用的理解却仍然处在初始阶段.文章简述了20年来人们对水在贵金属表面的吸附和浸润过程进行微观尺度上研究的进展,分析和讨论了水和表面作用的一般规律和所获得的经验教训,特别着重讨论了对上世纪80年代人们提出的经典双层冰模型的修正.  相似文献   

5.
Quantitative correlation between the critical impact velocity of droplet and geometry of superhydrophobic surfaces with microstructures is systematically studied.Experimental data shows that the critical impact velocity induced wetting transition of droplet on the superhydrophobic surfaces is strongly determined by the perimeter of single micropillar,the space between the repeat pillars and the advancing contact angle of the sidewall of the micropillars.The proposed model agrees well with the experimental results,and clarifies that the underlying mechanism which is responsible for the superhydrophobic surface with hierarchical roughness could sustain a higher liquid pressure than the surfaces with microstructures.  相似文献   

6.
In this paper, we investigate numerically the characteristics of surface plasmon polaritons (SPPs) sustained by two-dimensional arrays of metallic pillars protruding out of planar metal surfaces at terahertz (THz) frequencies. Various shapes of the pillars are analyzed, and it is shown that the pillar shape only has weak influence on the dispersion of spoof SPPs. However, the loss of spoof SPPs is closely dependent on the pillar shape. It is also shown that spoof SPPs on textured surfaces with pillars can exhibit much better confinement than those on pierced surfaces with holes.  相似文献   

7.
The shear behavior and the normal interaction between mica surfaces covered by surfactant or surfactant-polymer mixtures were studied with a Surface Forces Apparatus (SFA) nanotribometer. If the surfaces are compressed while fully immersed in an aqueous surfactant solution that adsorbs in the form of flat bilayers, hemifusion can be induced. When the hemifused surfaces are subject to shear, at least five different dynamic regimes can be recognized. The general behavior may be described by a model based on the kinetics of formation and rupture of adhesive bonds between the shearing surfaces, with an additional viscous term. Once the adsorbed surfactant layer is decorated with physigrafted copolymers, the number of sliding regimes may be reduced to only one, in which the shear stress increases sublinearly with the driving velocity. The adhesion energy and the resistance to hemifusion of the adsorbed surfactant-polymer layers are also strongly modified as the grafting density increases.Received: 4 March 2004, Published online: 13 October 2004PACS: 46.55. + d Tribology and mechanical contacts - 81.40.Pq Friction, lubrication, and wear  相似文献   

8.
The authors have employed a numerical procedure to analyse the adhesive contact between a soft elastic layer and a rough rigid substrate. The solution to the problem, which belongs to the class of the free boundary problems, is obtained by calculating Green’s function which links the pressure distribution to the normal displacements at the interface. The problem is then formulated in the form of a Fredholm integral equation of the first kind with a logarithmic kernel. The boundaries of the contact area are calculated by requiring the energy of the system to be stationary. This methodology has been employed to study the adhesive contact between an elastic semi-infinite solid and a randomly rough rigid profile with a self-affine fractal geometry. We show that, even in the presence of adhesion, the true contact area still linearly depends on the applied load. The numerical results are then critically compared with the predictions of an extended version of Persson’s contact mechanics theory, which is able to handle anisotropic surfaces, as 1D interfaces. It is shown that, for any given load, Persson’s theory underestimates the contact area by about 50% in comparison with our numerical calculations. We find that this discrepancy is larger than for 2D rough surfaces in the case of adhesionless contact. We argue that this increased difference might be explained, at least partially, by considering that Persson’s theory is a mean-field theory in spirit, so it should work better for 2D rough surfaces rather than for 1D rough surfaces. We also observe that the predicted value of separation is in agreement with our numerical results as well as the exponents of the power spectral density of the contact pressure distribution and of the elastic displacement of the solid. Therefore, we conclude that Persson’s theory captures almost exactly the main qualitative behaviour of the rough contact phenomena.  相似文献   

9.
It is shown how the algebraic geometry of the moduli space of Riemann surfaces entirely determines the partition function of Polyakov's string theory. This is done by using elements of Arakelov's intersection theory applied to determinants of families of differential operators parametrized by moduli space. As a result we write the partition function in terms of exponentials of Arakelov's Green functions and Faltings' invariant on Riemann surfaces. Generalizing to arithmetic surfaces, i.e. surfaces which are associated to an algebraic number fieldK, we establish a connection between string theory and the infinite primes ofK. As a result we conjecture that the usual partition function is a special case of a new partition function on the moduli space defined overK.  相似文献   

10.
A droplet of a liquid deposited on a surface structured in pillars may have two states of wetting: (1) Cassie-Baxter (CB), the liquid remains on top of the pillars, also known as heterogeneous wetting, or (2) Wenzel, the liquid fills completely the cavities of the surface, also known as homogeneous wetting. Studies show that between these two states, there is an energy barrier that, when overcome, results in the transition of states. The transition can be achieved by changes in geometry parameters of the surface, by vibrations of the surface or by evaporation of the liquid. In this paper, we present a comparison of two-dimensional simulations of the Cassie-Wenzel transition on pillar-structured surfaces using the cellular Potts model (CPM) with studies performed by Shahraz et al. In our work, we determine a transition diagram by varying the surface parameters such as the interpillar distance (G) and the pillar height (H). Our results were compared to those obtained by Shahraz et al. obtaining good agreement.  相似文献   

11.
In this paper we will review the scientific literature which addresses the atomic geometry and electronic structure of clean and hydrogenated semiconductor surfaces. In particular, results related to vibrational studies will be presented. First, surfaces of elemental semiconductors (Ge, Si), Ge/Si-alloys, and III–V compound semiconductors chemisorb in a first stage atomic hydrogen by saturating surface atom dangling bonds. In a second step surface bonds are broken and a change of the geometrical structure results. Finally, higher hydrogen exposures are able to etch semiconductor surfaces. Best understood to date are surfaces of Si(1 0 0), Si(1 1 1), GexSi1−x(1 0 0), and III–V's after cleavage which have been modeled by dimerized and undimerized structures. (1 0 0) surfaces of III–V semiconductors, like GaAs and InP, tend to be dimerized, too.  相似文献   

12.
Some simple arguments are made about the effect of impurities on adhesive interactions at solid junctions. A universal adhesive force relation is derived for brittle adhesion. The adhesive binding energy, ΔE, is an important parameter in brittle adhesion forces. ΔE has also been shown by others to be important when there is plastic flow. We found that impurity effects on ΔE are determined by the segregation energies to the junction and to the free surfaces. At low temperatures, if it is energetically more favorable for impurities to segregate to the surfaces than to the junction, then the impurities will decrease ΔE. The converse is also true. For example, for self junctions which are in registry, ΔE is decreased if surface segregation is exothermic and increased if it is endothermic. These segregation energy relationships are consistent with the results of a number of experiments on the effects of impurities on adhesion forces and grain boundary embrittlement.  相似文献   

13.
When electrons are interacting with a ferromagnetic material, their spin-polarization vector is expected to move. This spin motion, comprising an azimuthal precession and a polar rotation about the magnetization direction of the ferromagnet, has been studied in spin-polarized electron scattering experiments both in transmission and reflection geometry. In this review we show that electron-spin motion can be considered as a new tool to study ferromagnetic films and surfaces and we discuss its application to a number of different problems: (a) the transmission of spin-polarized electrons across ferromagnetic films, (b) the influence of spin-dependent gaps in the electronic band structure on the spin motion in reflection geometry, (c) interference experiments with spin-polarized electrons and (d) the influence of lattice relaxations in ferromagnetic films on the spin motion.  相似文献   

14.
When Cu-Zn alloys are annealed under dynamical vacuum the Zn component evaporates. The process is called dezincification. This paper presents the results of the dezincification of highly mechanically deformed surfaces of samples initially in the beta (bcc) phase by a combination of in situ optical microscopy observations together with TEM measurements. It is shown that grinding lines remaining from the sample preparation process act as nucleation centers for the alpha (fcc) phase. Under this surface preparation conditions the new fcc phase nucleates with a different geometry than the one reported in previous papers in which surfaces were finished by electropolishing. In the present case, we observe individual fcc precipitates with a well defined geometry. The typical size of precipitates is in the micron range, and depends on the dezincification parameters: final temperature, dezincification time and prior surface preparation. TEM observations show that the fcc precipitates contain a large density of defects, mainly dislocations and twin boundaries.  相似文献   

15.
P. Hren  D.W. Tu  A. Kahn 《Surface science》1984,146(1):69-79
The atomic structures of the two inequivalent (211) surfaces of GaAs have been investigated by LEED. Both surfaces, prepared by etching and heat-cleaning or ion-sputtering and annealing, are unstable and develop large (110) facets which exhibit the atomic geometry of the (110) GaAs surface. These facets entirely cover the surface. Three sets of facets, making 30°, 30° and 54° angles with the (211) plane, are detected on one surface. Only two sets, making 30° angles with the (211) plane, are detected on the other. The reasons for this difference are not understood at this time. The LEED study of Si(211) and Ge(211) shows that the Si surface is flat whereas the Ge surface exhibits reconstructed (311) facets. The structural difference between the (211) surfaces of GaAs and Ge and the facetting of the compound are invoked to explain the problems encountered in the MBE growth of GaAs on Ge(211).  相似文献   

16.
We discuss the microscopic origin of a previously poorly understood phenomenon, the alignment of a nematic liquid crystal (LC), consisting of rod-like molecular units, when placed on a rubbed polymer surface. After giving a brief review of the phenomenon and its technological utilization in flat panel displays we discuss the use of surface sensitive, polarization dependent near edge X-ray absorption spectroscopy for the study of rubbed polymer surfaces. These measurements are shown to provide a microscopic picture for the origin of the alignment process. It is shown that the LC orientation direction is set by an asymmetry in the molecular bonds, i.e. of the charge, at the rubbed polymer surface. The experimental results are explained by a general theory, based on tensor order parameters, which states that the minimum energy state of the interaction between the LC and oriented polymer surface corresponds to maximum directional overlap of the respective anisotropic charge distributions.  相似文献   

17.
Using thin film pillars approximately 100 nm in diameter, containing two Co layers of different thicknesses separated by a Cu spacer, we examine the process by which the scattering from the ferromagnetic layers of spin-polarized currents flowing perpendicular to the layers causes controlled reversal of the moment direction in the thin Co layer. The well-defined geometry permits a quantitative analysis of this spin-transfer effect, allowing tests of competing theories for the mechanism and also new insight concerning magnetic damping. When large magnetic fields are applied, the spin-polarized current no longer fully reverses the magnetic moment, but instead stimulates spin-wave excitations.  相似文献   

18.
S. Cai 《哲学杂志》2013,93(35):5505-5522
Meniscus and viscous forces are sources of adhesive force when two surfaces are separated with a micro-meniscus present at the interface. The adhesive force can be one of the main reliability issues when the contacting surfaces are ultra-smooth and the normal load is small, as is common for micro/nano devices. In this paper, both meniscus and viscous forces of menisci with symmetric and asymmetric contact angles are modelled. Equations for both meniscus and viscous forces in division of menisci are analytically formulated. The role of these two forces is evaluated during the separation process. The effects of the contact angles, division of menisci, as well as liquid thicknesses, surface tension and viscosity of the liquid, and separation distance and time during separation are presented. It is found that contact angles significantly affect the break point and meniscus force, and the magnitude of meniscus force can be largely reduced by choosing proper asymmetric contact angles. ‘Force scaling’ effects are found to be true for both meniscus and viscous forces when one larger meniscus is divided into large numbers of identical micro-menisci. Meniscus force increases with the number of divisions whereas viscous force decreases by an order of inverse the number of division (1/N). Optimal configurations for low adhesion are identified. This study presents a comprehensive analysis of meniscus and viscous forces during separation of menisci under different physical configurations. It provides a fundamental understanding of the physics of the process and knowledge for control of adhesion due to liquid menisci.  相似文献   

19.
This article reports a comparative study on texturing in silicon and germanium surfaces after exposure to femtosecond laser irradiation in the gaseous environments of sulfur hexafluoride (SF6) and hydrogen chloride (HCl). The surface texturing results from the combined effect of laser-assisted chemical etching and laser ablation. Optimized processing conditions have produced features on the order of nanometers in size. We demonstrate for the first time that regular conical pillars can be formed in Ge and that HCl can be used to form regular conical pillars in Si.  相似文献   

20.
This paper presents a theoretical analysis of a density measurement cell using an unidimensional model composed by acoustic and electroacoustic transmission lines in order to simulate non-ideal effects. The model is implemented using matrix operations, and is used to design the cell considering its geometry, materials used in sensor assembly, range of liquid sample properties and signal analysis techniques. The sensor performance in non-ideal conditions is studied, considering the thicknesses of adhesive and metallization layers, and the effect of residue of liquid sample which can impregnate on the sample chamber surfaces. These layers are taken into account in the model, and their effects are compensated to reduce the error on density measurement. The results show the contribution of residue layer thickness to density error and its behavior when two signal analysis methods are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号