首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The first vacuum ultraviolet absorption spectrum of a 1,2,4-triazole has been obtained and analyzed in detail, with assistance from both an enhanced UV photoelectron spectroscopic study and ab initio multi-reference multi-root configuration interaction procedures. For both 1H- and 1-methyl-1,2,4-triazoles, the first ionization energy bands show complex vibrational structure on the low-energy edges of otherwise unstructured bands. Detailed analysis of these bands confirms the presence of three ionized states. The 6-7 eV VUV spectral region shows an unusual absorption plateau, which is interpreted in terms of the near degeneracy of the first two ionization energies, leading to a pseudo Jahn-Teller effect. The "fingerprint" of the ionization spectrum yields band origins for several Rydberg states. The configuration interaction study shows that although the equilibrium structure for the first cation is effectively planar, the second cation shows significant twisting of the ring system. Some calculated singlet electronic states also show skeletal twisting in which the ring C-H is substantially out of plane.  相似文献   

2.
3.
Electronic state spectroscopy of limonene has been investigated using vacuum ultraviolet photoabsorption spectroscopy in the energy range 5.0-10.8 eV. The availability of a high resolution photon beam (~0.075 nm) enabled detailed analysis of the vibrational progressions and allowed us to propose, for the first time, new assignments for several Rydberg series. Excited states located in the 7.5-8.4 eV region have been studied for the first time. A He(I) photoelectron spectrum has also been recorded from 8.2 to 9.5 eV and compared to previous low resolution works. A new value of 8.521 ± 0.002 eV for the ground ionic state adiabatic ionisation energy is proposed. Absolute photoabsorption cross sections were derived in the 10-26 eV range from electron scattering data. All spectra presented in this paper represent the highest resolution data yet reported for limonene. These experiments are complemented by new ab initio calculations performed for the three most abundant conformational isomers of limonene, which we then used in the assignment of the spectral bands.  相似文献   

4.
The electronic vertical excitation energies for singlet and triplet valence, and Rydberg states of trans-buta-1,3-diene have been computed using ab initio multi-reference multi-root CI procedures with a [4s3p3d3f] set of Rydberg functions. Close numerical agreement between theory and experiment was found for a number of low-lying electronic states.  相似文献   

5.
The electronic transitions and resonance-enhanced vibrational excitations of octafluorocyclopentene (c-C5F8) have been investigated using high-resolution photoabsorption spectroscopy in the energy range 6-11 eV. In addition, the high-resolution electron energy loss spectrum (HREELS) was recorded under the electric dipolar excitation conditions (100 eV incident energy, approximately 0 degrees scattering angle) over the 5-14 eV energy loss range. A He(I) photoelectron spectrum (PES) has also been recorded between 11 and 20 eV, allowing us to derive a more precise value of (11.288 +/- 0.002) eV for the ground neutral state adiabatic ionization energy. All spectra presented in this paper represent the first and highest resolution data yet reported for octafluorocyclopentene. Ab initio calculations have been performed for helping in the assignment of the spectral bands for both neutral excited states and ionic states.  相似文献   

6.
The photoabsorption spectrum of but-2-yne in the range 5.5–11 eV (225–110 nm) has been recorded using a synchrotron radiation source. The spectrum is dominated by three d-type Rydberg series, converging to the first ionisation energy (IE) (π−1, 9.562 eV). Origins of the π3d members are 7.841, 7.977 and 8.018 eV, respectively. Transitions of low intensity, arising from excitation of the π3s state (origin, 6.35 eV) and two π3p Rydberg states (7.38 and 7.51 eV, respectively) have also been identified in the spectrum. Near-threshold electron energy-loss spectra reveal valence excited triplet states at about 5.2 and 5.8 eV, respectively.Electronic excitation energies for valence and Rydberg-type states have been computed using ab initio multi-reference multi-root CI methods. These studies used a triple zeta + polarisation basis set, augmented by diffuse (Rydberg) orbitals, to generate the theoretical singlet and triplet energy manifolds. The correlation of theory and experiment shows the nature of the more intense Rydberg state types, and identification of the main valence and Rydberg bands. Calculated energies for Rydberg states are close to those expected, and there is generally a good correlation between the theoretical and experimental envelopes. It was possible to generate singlet Rydberg states which relate to the 5-lowest IEs of but-2-yne; furthermore, the separation of these sequences shows that the IE order (under D3h symmetry) is: , also supported by direct calculation of the IEs by CI.The lowest valence singlet states are ππ*, optically forbidden, and calculated to lie near 7.3 and 7.6 eV. The states which contribute strongly to the observed spectrum are πσ* near 7.9 eV having excitation, followed by several ππ* and πσ* states between 10.0 and 10.5 eV; an 1E′ antisymmetric combination(2e′2e″ − 2e′2e″) is by far the strongest in intensity. A further group of symmetry-allowed valence states are calculated to lie near 12.3 and 12.9 eV. The two lowest triplet states, both of E′ symmetry (ππ*), have vertical excitation energies of 5.7 and 6.2 eV, but are strongly bent with a trans-CCCC unit (CS and C2h). The theoretical work confirms that, on intensity grounds, valence excited states do not contribute significantly to the spectrum. CI calculations of the ionic states give the ionisation energy sequence (D3h): . Adiabatic structures for the first cation, two triplets, and a singlet (C2h) were obtained; these show shortening of C–C, and lengthening of CC, in a trans-CCCC, as is found with ethyne.  相似文献   

7.
The N2(+) states lying in the ionization region of 26-45 eV and the dissociation dynamics are investigated by high-resolution threshold photoelectron spectroscopy and threshold photoelectron-photoion coincidence spectroscopy. The threshold photoelectron spectrum exhibits several broad bands as well as sharp peaks. The band features are assigned to the N2(+) states associated with the removal of an inner-valence electron, by a comparison with a configuration interaction calculation. In contrast, most of the sharp peaks on the threshold photoelectron spectrum are allocated to ionic Rydberg states converging to N2(2+). Dissociation products formed from the inner-valence N2(+) states are determined by threshold photoelectron-photoion coincidence spectroscopy. The dissociation dynamics of the inner-valence ionic states is discussed with reference to the potential energy curves calculated.  相似文献   

8.
Structural Chemistry - In this paper, an approach is proposed for determining the ratio of prototropic annular tautomers of organosilicon 1,2,3-triazoles, which are hardly experimentally determined...  相似文献   

9.
This paper reports on the first measurements of the electron impact electronic excitation cross-sections for carbonyl fluoride, F(2)CO, measured at 30 eV, 10° and 100 eV, 5° scattering angle, while sweeping the energy loss over the range 5.0-18.0 eV. The electronic-state spectroscopy has been investigated and the assignments are supported by quantum chemical calculations. The energy bands above 9.0 eV and the vibrational progressions superimposed upon it have been observed for the first time. Vibronic coupling has been shown to play an important role dictating the nature of the observed excited states, especially for the low-lying energy region (6.0-8.0 eV). New experimental evidence for the 6(1)B(2) state proposed to have its maximum at 12.75 eV according to the vibrational excitation reported in this energy region (11.6-14.0 eV). The n = 3 members of the Rydberg series have been assigned converging to the lowest ionization energy limits, 13.02 eV ((2)B(2)), 14.09 eV ((2)B(1)), 16.10 ((2)B(2)), and 19.15 eV ((2)A(1)) reported for the first time and classified according to the magnitude of the quantum defects (δ).  相似文献   

10.
Self-consistent ab initio and configuration interaction (CI) calculations are presented for the Rydberg states of the trans-1,3,5-hexatriene molecule. Seven Rydberg series were identified, four optically allowed (ns, nd s 2, nd 29) and three optically forbidden (np z, np y, np z). These present results plus previous calculations on the valence states are used to assign the transitions observed in the ultraviolet (UV), electron-impact (EI) and two-photon spectra of this molecule.  相似文献   

11.
Potential-energy curves for the ground state and lower excited states of the Cd2 dimer have been calculated. They are obtained using a multireference doubles excitation configuration interaction procedure and employing Slater basis sets, previously optimized at the self-consistent-field level for excited states of the Cd atom. The spectroscopic constants and excitation energies for the bound states of Cd2 have been compared with experimental as well as other theoretical results. The ground state of Cd2 is essentially repulsive and presents a shallow van der Waals minimum. The computed adiabatic electronic transitions are in good agreement with the experimental ones. Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 2 May 2000  相似文献   

12.
The UV photoelectron spectra of simple members of the 1H- and 2H-triazaphospholes are reported; the spectra were assigned by ab initio molecular-orbital configuration-interaction methods, following the observation of breakdown of Koopmanns' theorem at the SCF level. The ring electron distribution, and the implications for reactivity of the rings are discussed.  相似文献   

13.
The effect of hydration on the electronic structure of H(2)O(2) is investigated by liquid-jet photoelectron spectroscopy measurements and ab initio calculations. Experimental valence electron binding energies of the H(2)O(2) orbitals in water are, on average, 1.9 eV red-shifted with respect to the gas-phase molecule. A smaller width of the first peak was observed in the photoelectron spectrum from the solution. Our experiment is complemented by simulated photoelectron spectra, calculated at the ab initio level of theory (with EOM-IP-CCSD and DFT methods), and using path-integral sampling of the ground-state density. The observed shift in ionization energy upon solvation is attributed to a combination of nonspecific electrostatic effects (long-range polarization) and of the specific interactions between H(2)O(2) and H(2)O molecules in the first solvation shell. Changes in peak widths are found to result from merging of the two lowest ionized states of H(2)O(2) in water due to conformational changes upon solvation. Hydration effects on H(2)O(2) are stronger than on the H(2)O molecule. In addition to valence spectra, we report oxygen 1s core-level photoelectron spectra from H(2)O(2)(aq), and observed energies and spectral intensities are discussed qualitatively.  相似文献   

14.
High-resolution X-ray photoelectron spectroscopic (XPS) measurements of the various intrinsic redox states of polyaniline (PANI), using a monochromatized Al—Kα source, were carried out. The presence of the imine, amine and positively charged nitrogen species corresponding to a particular intrinsic redox state and protonation level of the polymer was resolved quantitatively and unambiguously. The result confirmed the peak assignments of former XPS core-level studies using the lower resolution non-monochromatized Mg—Kα X-ray source. Thus, the high-resolution XPS using a monochromatized Al—Kα X-ray source is a truly unique tool for the convenient and quantitative analysis of the various intrinsic redox states of PANI. Received: 16 May 2000/Accepted: 29 August 2000  相似文献   

15.
The interaction between a Ni atom and a Cu atom in the configurations (3d)9(4s)1 and (3d)10(4s)1, respectively, has been calculated usingab initio Hartree-Fock and configuration interaction methods. The chemical bond between the two atoms is due to a bonding 4sσ molecular orbital. Equilibrium distances, dissociation energies and vibrational frequencies are predicted for the low-lying states. Finally the influence of spin-orbit coupling on the low-lying states is considered.  相似文献   

16.
17.
Structure and properties of the IO, IO- and HOI species, which are of potential importance for the ozone destruction catalytic cycle in the troposphere, have been calculated together with the EPR, NMR and UV-visible spectra by ab initio methodology with account of spin-orbit coupling (SOC) effects. Multi-configuration self-consistent field calculations with linear and quadratic response techniques and the multi-reference configuration interaction method have been employed. Photodissociation of these species, crucial for the catalytic ozone-destruction cycle, is critically reviewed and analyzed. Calculations predict that the singlet-triplet (S-T) transition to the lowest triplet state (X1 A' --> 3A') should be responsible for the weak long-wavelength tail absorption (approximately 450-560 nm) and photodissociation of the HOI molecule. The second, more intense, band around 400 nm is produced by two overlapping S-S and S-T transitions. In order to check this assignment of the HOI photodissociation the isoelectronic IO- anion and IO radical have been studied by the same methods. Comparison with the EPR spectrum of the IO radical indicates that the methods are reliable which gives credit to the accuracy of the HOI spectral interpretation. NMR spectra of HOI and IO- molecules and some other properties are calculated for the first time.  相似文献   

18.
Ab initio configuration interaction calculations have been performed for the X 1Sigma+ and B 1Sigma+ electronic states of LiCl. Potential energy curves, dipole moment functions, and dipole transition moments have been computed for internuclear distances between R = 2.5a0 and 50a0. Single- and double-excitation configuration interaction wave functions were constructed using molecular orbitals obtained from a two-state averaged multiconfiguration self-consistent-field calculation. This procedure yielded an accurate energy splitting between the covalent and ionic separated-atom limits. The calculated avoided crossing of the X and B state curves occurs at R = 16.2a0, in close agreement with previous calculations using a semiempirical covalent-ionic resonance model. X 1Sigma+ state spectroscopic constants are in excellent agreement with experimental values.  相似文献   

19.
Electronic structure and conformation of 2-chloro-2′-deoxyadenosine (2CldAdo) and 2-chloroadenosine (2ClAde) have been studied by 35Cl-NQR spectroscopy and ab initio calculations by the B3LYP/6-31G* method.

The usefulness of NQR spectroscopy and ab initio calculations for the investigation of redistribution of electron density and structural changes in 2CldAdo and 2ClAde was assessed and a comparison of the electron distribution in the unsubstituted 2ClAde (monomer, dimer) and the substituted 2ClAdo was made.  相似文献   


20.
Intermolecular interaction energies of 12 orientations of C(3)F(8) dimers were calculated with electron correlation correction by the second-order M?ller-Plesset perturbation method. The antiparallel C(2h) dimer has the largest interaction energy (-1.45 kcal/mol). Electron correlation correction increases the attraction considerably. Electrostatic energy is not large. Dispersion is mainly responsible for the attraction. Orientation dependence of the interaction energy of the C(3)F(8) dimer is substantially smaller than that of the C(3)H(8) dimer. The calculated interaction energy of the C(3)F(8) dimer at the potential minimum is 78% of that of the C(3)H(8) dimer (-1.85 kcal/mol), whereas the interaction energies of the CF(4) and C(2)F(6) dimers are larger than those of the CH(4) and C(2)H(6) dimers. The intermolecular separation in the C(3)F(8) dimer at the potential minimum is substantially larger than that in the C(3)H(8) dimer. The larger intermolecular separation due to the steric repulsion between fluorine atoms is the cause of the smaller interaction energy of the C(3)F(8) dimer at the potential minimum. The calculated intermolecular interaction energy potentials of the C(3)F(8) dimers using an all atom model OPLS-AA (OPLS all atom model) force field and a united atom model force field were compared with the ab initio calculations. Although the two force fields well reproduces the experimental vapor and liquid properties of perfluoroalkenes, the comparison shows that the united atom model underestimates the potential depth and orientation dependence of the interaction energy. The potentials obtained by the OPLS-AA force field are close to those obtained by the ab initio calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号