首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a mathematical model which describes the dynamic evolution of a viscoelastic body in frictional contact with an obstacle. The contact is modelled with normal compliance and unilateral constraint, associated to a rate slip-dependent version of Coulomb’s law of dry friction. In order to approximate the contact conditions, we consider a regularized problem wherein the contact is modelled by a standard normal compliance condition without finite penetrations. For each problem, we derive a variational formulation and an existence result of the weak solution of the regularized problem is obtained. Next, we prove the convergence of the weak solution of the regularized problem to the weak solution of the initial nonregularized problem. Then, we introduce a fully discrete approximation of the variational problem based on a finite element method and on a second order time integration scheme. The solution of the resulting nonsmooth and nonconvex frictional contact problems is presented, based on approximation by a sequence of nonsmooth convex programming problems. Finally, some numerical simulations are provided in order to illustrate both the behaviour of the solution related to the frictional contact conditions and the convergence result.  相似文献   

2.
Fanchao Kong 《Acta Appl Math》2018,153(1):125-146
We consider a mathematical model which describes the sliding frictional contact between a viscoplastic body and an obstacle, the so-called foundation. The process is quasistatic, the material’s behavior is described with a viscoplastic constitutive law with internal state variable and the contact is modelled with normal compliance and unilateral constraint. The wear of the contact surfaces is taken into account, and is modelled with a version of Archard’s law. We derive a mixed variational formulation of the problem which involve implicit history-dependent operators. Then, we prove the unique weak solvability of the contact model. The proof is based on a fixed point argument proved in Sofonea et al. (Commun. Pure Appl. Anal. 7:645–658, 2008), combined with a recent abstract existence and uniqueness result for mixed variational problems, obtained in Sofonea and Matei (J. Glob. Optim. 61:591–614, 2014).  相似文献   

3.
We consider a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive support. We model the material’s behavior with an electro-elastic constitutive law; the frictional contact is described with a boundary condition involving Clarke’s generalized gradient and the electrical condition on the contact surface is modelled using the subdifferential of a proper, convex and lower semicontinuous function. We derive a variational formulation of the model and then, using a fixed point theorem for set valued mappings, we prove the existence of at least one weak solution. Finally, the uniqueness of the solution is discussed; the investigation is based on arguments in the theory of variational-hemivariational inequalities.  相似文献   

4.
We consider a mathematical model which describes the frictional contact between a deformable body and a foundation. The process is quasistatic, the material is assumed to be viscoelastic with long memory and the frictional contact is modelled with subdifferential boundary conditions. The mechanical damage of the material is described by the damage function, which is modelled by a nonlinear partial differential equation. We derive the variational formulation of the problem, which is a coupled system of a hemivariational inequality and a parabolic equation. Then we prove the existence of a unique weak solution to the model. The proof is based on arguments of abstract stationary inclusion and a fixed point theorem.  相似文献   

5.
We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca’s law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent variational equation for the potential field. Then we prove the existence of a unique weak solution to the model. Moreover, the proof is based on arguments of evolution equations and on the Banach fixedpoint theorem.  相似文献   

6.
The goal of this paper is to deal with a mathematical model which describes the quasistatic frictional contact between a viscoplastic body and a foundation. The contact is modeled with normal compliance, unilateral constraint and memory term. We present the classical formulation of the problem together with the list of assumptions on the data. Then we derive the variational–hemivariational formulation of the model and we prove its unique weak solvability. The proof is based on a recent abstract result of a class of history-dependent variational–hemivariational inequalities.  相似文献   

7.
We examine a mathematical model that describes a quasistatic adhesive contact between a viscoplastic body and deformable foundation. The material’s behaviour is described by the rate-type constitutive law which involves functions with a non-polynomial growth. The contact is modelled by the normal compliance condition with limited penetration and adhesion, a subdifferential friction condition also depending on adhesion, and the evolution of bonding field is governed by an ordinary differential equation. We present the variational formulation of this problem which is a system of an almost history-dependent variational–hemivariational inequality for the displacement field and an ordinary differential equation for the bonding field. The results on existence and uniqueness of solution to an abstract almost history-dependent inclusion and variational–hemivariational inequality in the reflexive Orlicz–Sobolev space are proved and applied to the adhesive contact problem.  相似文献   

8.
O. Chau  W. Han  M. Sofonea 《Acta Appl Math》2002,71(2):159-178
We consider a mathematical model which describes the frictional contact between a viscoelastic body and a reactive foundation. The process is assumed to be dynamic and the contact is modeled with a general normal damped response condition and a local friction law. We present a variational formulation of the problem and prove the existence and uniqueness of the weak solution, using results on evolution equations with monotone operators and a fixed point argument. We then introduce and study a fully discrete numerical approximation scheme of the variational problem, in terms of the velocity variable. The numerical scheme has a unique solution. We derive error estimates under additional regularity assumptions on the data and the solution.  相似文献   

9.
We consider a mathematical model which describes the frictional contact between an electro-elastic–visco-plastic body and a conductive foundation. The contact is modelled with normal compliance and a version of Coulomb’s law of dry friction, in which the stiffness and the friction coefficients depend on the electric potential. We derive a variational formulation of the problem and we prove an existence and uniqueness result. The proof is based on a recent existence and uniqueness result on history-dependent quasivariational inequalities obtained in [15]. Then we introduce a fully discrete scheme for solving the problem and, under certain solution regularity assumptions, we derive an optimal order error estimate. Finally, we present some numerical results in the study of a two-dimensional test problem which describes the process of contact in a microelectromechanical switch.  相似文献   

10.
We consider a model for quasistatic frictional contact between a viscoelastic body and a foundation. The material constitutive relation is assumed to be nonlinear. The mechanical damage of the material, caused by excessive stress or strain, is described by the damage function, the evolution of which is determined by a parabolic inclusion. The contact is modeled with the normal compliance condition and the associated version of Coulomb's law of dry friction. We derive a variational formulation for the problem and prove the existence of its unique weak solution. We then study a fully discrete scheme for the numerical solutions of the problem and obtain error estimates on the approximate solutions.  相似文献   

11.
We consider a mathematical model which describes the dynamic process of contact between a piezoelectric body and an electrically conductive foundation. We model the material’s behavior with a nonlinear electro-viscoelastic constitutive law; the contact is frictionless and is described with the normal compliance condition and a regularized electrical conductivity condition. We derive a variational formulation for the problem and then, under a smallness assumption on the data, we prove the existence of a unique weak solution to the model. We also investigate the behavior of the solution with respect the electric data on the contact surface and prove a continuous dependence result. Then, we introduce a fully discrete scheme, based on the finite element method to approximate the spatial variable and the backward Euler scheme to discretize the time derivatives. We treat the contact by using a penalized approach and a version of Newton’s method. We implement this scheme in a numerical code and, in order to verify its accuracy, we present numerical simulations in the study of two-dimensional test problems. These simulations provide a numerical validation of our continuous dependence result and illustrate the effects of the conductivity of the foundation, as well.  相似文献   

12.
We consider control problems for a mathematical model describing the frictional bilateral contact between a piezoelectric body and a foundation. The material’s behavior is modeled with a linear electro–elastic constitutive law, the process is static and the foundation is assumed to be electrically conductive. Both the friction and the electrical conductivity conditions on the contact surface are described with the Clarke subdifferential boundary conditions. The weak formulation of the problem consists of a system of two hemivariational inequalities. We provide the results on existence and uniqueness of a weak solution to the model and, under additional assumptions, the continuous dependence of a solution on the data. Finally, for a class of optimal control problems and inverse problems, we prove the existence of optimal solutions.  相似文献   

13.
We consider a quasistatic frictional contact problem between a piezoelectric body and a foundation. The contact is modeled with normal compliance and friction is modeled with a general version of Coulomb's law of dry friction; the process is quasistatic and the material's behavior is described by an electro-viscoelastic constitutive law with damage. We derive a variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field, and the damage field. Then we provide the existence of a unique weak solution to the model. The proof is based on arguments of evolutionary variational inequalities and fixed point.  相似文献   

14.
We consider a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The process is dynamic, the material's behavior is modeled with an electro-viscoelastic constitutive law and the contact is described by subdifferential boundary conditions. We derive the variational formulation of the problem which is in the form of a system involving a second order evolutionary hemivariational inequality for the displacement field coupled with a time-dependent hemivariational inequality for the electric potential field. Then we prove the existence of a unique weak solution to the model. The proof is based on arguments of abstract second order evolutionary inclusions with monotone operators.  相似文献   

15.
We consider a mathematical model which describes the frictional contact between a piezoelectric body and an electrically conductive foundation. The process is quasistatic, the material behavior is modeled with an electro-viscoelastic constitutive law and the contact is described with subdifferential boundary conditions. We derive the variational formulation of the problem which is in the form of a system involving two history-dependent hemivariational inequalities in which the unknowns are the velocity and electric potential field. Then we prove the existence of a unique weak solution to the model. The proof is based on a recent result on history-dependent hemivariational inequalities obtained in Migórski et al. (submitted for publication) [16].  相似文献   

16.
We study an evolution problem which describes the dynamic contact of an elastic-visco-plastic body with a foundation. We model the contact with normal damped response and a local friction law. A damage of the material caused by elastic deformation is taken into account, its evolution is described by an inclusion of parabolic type. We derive variational formulation for the model which is in the form of a system involving the displacement field, the stress field and the damage field. We prove the existence and uniqueness result of the weak solution. The proof is based on arguments of evolution equations with monotone operators, a classical existence and uniqueness result on parabolic inequalities and fixed point.  相似文献   

17.
We consider here a mathematical model describing the bilateral frictional contact between a thermo‐piezoelectric body and a thermally conductive foundation. We model the behavior of the material with a linear thermo‐electro‐elastic constitutive law. The process is assumed to be quasistatic and the contact is modeled with a nonlocal version of Coulomb's dry friction law, in which the frictional heat generated in the process, is taken into account. We drive a variational formulation of the problem and establish the existence of its weak solution.  相似文献   

18.
A static frictional contact problem between an elasto-plastic body and a rigid foundation is considered. The material’s behavior is described by the nonlinear elastic constitutive Hencky’s law. The contact is modeled with the Signorini condition and a version of Coulomb’s law in which the coefficient of friction depends on the slip. The existence of a weak solution is proved by using Schauder’s fixed-point theorem combined with arguments of abstract variational inequalities. Afterward, a successive iteration technique, based on the Ka?anov method, to solve the problem numerically is proposed, and its convergence is established. Then, to improve the conditioning of the iterative problem, an appropriate Augmented Lagrangian formulation is used and that will lead us to Uzawa block relaxation method in every iteration. Finally, numerical experiments of two-dimensional test problems are carried out to illustrate the performance of the proposed algorithm.  相似文献   

19.
We consider a mathematical model which describes the bilateral quasistatic contact of a viscoelastic body with a rigid obstacle. The contact is modelled with a modified version of Coulomb's law of dry friction and, moreover, the coefficient of friction is assumed to depend either on the total slip or on the current slip. In the first case, the problem depends upon contact history. We present the classical formulations of the problems, the variational formulations and establish the existence and uniqueness of a weak solution to each of them, when the coefficient of friction is sufficiently small. The proofs are based on classical results for elliptic variational inequalities and fixed point arguments. We also study the dependence of the solutions on the perturbations of the friction coefficient and obtain a uniform convergence result. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
A coupled thermoviscoelastic frictional contact problem is investigated. The contact is modelled by the Signorini condition for the displacement velocities and the friction by the Coulomb law. The heat generated by friction is described by a non‐linear boundary condition with at most linear growth. The weak formulation of the problem consists of a variational inequality for the elasticity part and a variational equation for the heat conduction part. In order to prove the existence of a solution to this problem we first use an approximation of the Signorini condition by the penalty method. The existence of a solution for the approximate problem is shown using the fixed‐point theorem of Schauder. This theorem is applied to the composition of the solution operator for the contact problem with given temperature field and the solution operator for the heat equation problem with known displacement field. To obtain this proof, the unique solvability of both problems is necessary. Due to this reason it is necessary to introduce the penalty method. While the penalized contact problem has a unique solution, this is not clear for the original contact problem. The solvability of the original frictional contact problem is verified by an investigation of the limit for vanishing penalty parameter. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号