首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This comparison of some a posteriori error estimators aims at empirical evidence for a ranking of their performance for a Poisson model problem with conforming lowest order finite element discretizations. Modified residual-based error estimates compete with averaging techniques and two estimators based on local problem solving. Multiplicative constants are involved to achieve guaranteed upper and lower energy error bounds up to higher order terms. The optimal strategy combines various estimators.  相似文献   

2.
Techniques are developed for a posteriori error analysis of the non-homogeneous Dirichlet problem for the Laplacian giving computable error bounds for the error measured in the energy norm. The techniques are based on the equilibrated residual method that has proved to be reliable and accurate for the treatment of problems with homogeneous Dirichlet data. It is shown how the equilibrated residual method must be modified to include the practically important case of non-homogeneous Dirichlet data. Explicit and implicit a posteriori error estimators are derived and shown to be efficient and reliable. Numerical examples are provided illustrating the theory.  相似文献   

3.
We introduce two residual type a posteriori error estimators for second-order elliptic partial differential equations with its right-hand side in L p (1 < p ⩽ 2) space. Both estimators are proved to yield global upper and local lower bounds for the W 1,p seminorm of the error. We adopt the estimators as the indicators in h-mesh adaptive method to solve two typical model problems. It is verified by the numerical results that the estimators lead to optimal orders of convergence.  相似文献   

4.
Local a posteriori error estimators for finite element approximation of variational inequalities are derived. These are shown to provide upper bounds on the discretization error. Numerical examples are given illustrating the theoretical results. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
In this work, the residual‐type posteriori error estimates of stabilized finite volume method are studied for the steady Stokes problem based on two local Gauss integrations. By using the residuals between the source term and numerical solutions, the computable global upper and local lower bounds for the errors of velocity in H1 norm and pressure in L2 norm are derived. Furthermore, a global upper bound of u ? uh in L2‐norm is also derived. Finally, some numerical experiments are provided to verify the performances of the established error estimators. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This work concerns with the discontinuous Galerkin (DG) method for the time‐dependent linear elasticity problem. We derive the a posteriori error bounds for semidiscrete and fully discrete problems, by making use of the stationary elasticity reconstruction technique which allows to estimate the error for time‐dependent problem through the error estimation of the associated stationary elasticity problem. For fully discrete scheme, we make use of the backward‐Euler scheme and an appropriate space‐time reconstruction. The technique here can be applicable for a variety of DG methods as well.  相似文献   

7.
In this paper, we study a posteriori error estimates for finite element approximation of stochastic partial differential delay equations containing a noise. We derive an energy norm a posteriori bounds for an Euler time-stepping method combined with a standard Galerkin schemes for the problems. For accessibility, we first address the spatially semidiscrete case and then move to the fully discrete scheme.  相似文献   

8.
In this paper, we present a posteriori error estimates of gradient recovery type for elliptic obstacle problems. The a posteriori error estimates provide both lower and upper error bounds. It is shown to be equivalent to the discretization error in an energy type norm for general meshes. Furthermore, when the solution is smooth and the mesh is uniform, it is shown to be asymptotically exact. Some numerical results which demonstrate the theoretical results are also reported in this paper.  相似文献   

9.
The paper is devoted to a posteriori quantitative analysis for errors caused by linearization of non-linear elliptic boundary value problems and their finite element realizations. We employ duality theory in convex analysis to derive computable bounds on the difference between the solution of a non-linear problem and the solution of the linearized problem, by using the solution of the linearized problem only. We also derive computable bounds on differences between finite element solutions of the nonlinear problem and finite element solutions of the linearized problem, by using finite element solutions of the linearized problem only. Numerical experiments show that our a posteriori error bounds are efficient.  相似文献   

10.
In this paper, we conduct a goal-oriented a posteriori analysis for the error in a quantity of interest computed from a cell-centered finite volume scheme for a semilinear elliptic problem. The a posteriori error analysis is based on variational analysis, residual errors and the adjoint problem. To carry out the analysis, we use an equivalence between the cell-centered finite volume scheme and a mixed finite element method with special choice of quadrature.  相似文献   

11.
This paper deals with an adaptive technique to compute structural-acoustic vibration modes. It is based on an a posteriori error estimator for a finite element method free of spurious or circulation nonzero-frequency modes. The estimator is shown to be equivalent, up to higher order terms, to the approximate eigenfunction error, measured in a useful norm; moreover, the equivalence constants are independent of the corresponding eigenvalue, the physical parameters, and the mesh size. This a posteriori error estimator yields global upper and local lower bounds for the error and, thus, it may be used to design adaptive algorithms. We propose a local refinement strategy based on this estimator and present a numerical test to assess the efficiency of this technique.  相似文献   

12.
In this paper, we consider the a posteriori error analysis of discontinuous Galerkin finite element methods for the steady and nonsteady first order hyperbolic problems with inflow boundary conditions. We establish several residual-based a posteriori error estimators which provide global upper bounds and a local lower bound on the error. Further, for nonsteady problem, we construct a fully discrete discontinuous finite element scheme and derive the a posteriori error estimators which yield global upper bound on the error in time and space. Our a posteriori error analysis is based on the mesh-dependent a priori estimates for the first order hyperbolic problems. These a posteriori error analysis results can be applied to develop the adaptive discontinuous finite element methods.  相似文献   

13.
We analyze the stability of the Cooley-Tukey algorithm for the Fast Fourier Transform of ordern=2 k and of its inverse by using componentwise error analysis.We prove that the components of the roundoff errors are linearly related to the result in exact arithmetic. We describe the structure of the error matrix and we give optimal bounds for the total error in infinity norm and inL 2 norm.The theoretical upper bounds are based on a worst case analysis where all the rounding errors work in the same direction. We show by means of a statistical error analysis that in realistic cases the max-norm error grows asymptotically like the logarithm of the sequence length by machine precision.Finally, we use the previous results for introducing tight upper bounds on the algorithmic error for some of the classical fast Helmholtz equation solvers based on the Faster Fourier Transform and for some algorithms used in the study of turbulence.  相似文献   

14.
The aim of this paper is to introduce residual type a posteriori error estimators for a Poisson problem with a Dirac delta source term, in L p norm and W1,p seminorm. The estimators are proved to yield global upper and local lower bounds for the corresponding norms of the error. They are used to guide adaptive procedures, which are experimentally shown to lead to optimal orders of convergence.  相似文献   

15.
On Mixed Error Estimates for Elliptic Obstacle Problems   总被引:1,自引:0,他引:1  
We establish in this paper sharp error estimates of residual type for finite element approximation to elliptic obstacle problems. The estimates are of mixed nature, which are neither of a pure a priori form nor of a pure a posteriori form but instead they are combined by an a priori part and an a posteriori part. The key ingredient in our derivation for the mixed error estimates is the use of a new interpolator which enables us to eliminate inactive data from the error estimators. One application of our mixed error estimates is to construct a posteriori error indicators reliable and efficient up to higher order terms, and these indicators are useful in mesh-refinements and adaptive grid generations. In particular, by approximating the a priori part with some a posteriori quantities we can successfully track the free boundary for elliptic obstacle problems.  相似文献   

16.
In this paper, we study a posteriori error estimates of the edge stabilization Galerkin method for the constrained optimal control problem governed by convection-dominated diffusion equations. The residual-type a posteriori error estimators yield both upper and lower bounds for control u measured in L 2-norm and for state y and costate p measured in energy norm. Two numerical examples are presented to illustrate the effectiveness of the error estimators provided in this paper.   相似文献   

17.
In this article, an abstract framework for the error analysis of discontinuous Galerkin methods for control constrained optimal control problems is developed. The analysis establishes the best approximation result from a priori analysis point of view and delivers a reliable and efficient a posteriori error estimator. The results are applicable to a variety of problems just under the minimal regularity possessed by the well-posedness of the problem. Subsequently, the applications of C 0 interior penalty methods for a boundary control problem as well as a distributed control problem governed by the biharmonic equation subject to simply supported boundary conditions are discussed through the abstract analysis. Numerical experiments illustrate the theoretical findings.  相似文献   

18.
We derive residual‐based a posteriori error estimates of finite element method for linear parabolic interface problems in a two‐dimensional convex polygonal domain. Both spatially discrete and fully discrete approximations are analyzed. While the space discretization uses finite element spaces that are allowed to change in time, the time discretization is based on the backward Euler approximation. The main ingredients used in deriving a posteriori estimates are new Clément type interpolation estimates and an appropriate adaptation of the elliptic reconstruction technique introduced by (Makridakis and Nochetto, SIAM J Numer Anal 4 (2003), 1585–1594). We use only an energy argument to establish a posteriori error estimates with optimal order convergence in the ‐norm and almost optimal order in the ‐norm. The interfaces are assumed to be of arbitrary shape but are smooth for our purpose. Numerical results are presented to validate our derived estimators. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 570–598, 2017  相似文献   

19.
Summary. We derive a posteriori error estimators for convection-diffusion equations with dominant convection. The estimators yield global upper and local lower bounds on the error measured in the energy norm such that the ratio of the upper and lower bounds only depends on the local mesh-Peclet number. The estimators are either based on the evaluation of local residuals or on the solution of discrete local Dirichlet or Neumann problems. Received February 10, 1997 / Revised version received November 4, 1997  相似文献   

20.
This article presents a posteriori error estimates for the mixed discontinuous Galerkin approximation of the stationary Stokes problem. We consider anisotropic finite element discretizations, i.e., elements with very large aspect ratio. Our analysis covers two‐ and three‐dimensional domains. Lower and upper error bounds are proved with minimal assumptions on the meshes. The lower error bound is uniform with respect to the mesh anisotropy. The upper error bound depends on a proper alignment of the anisotropy of the mesh, which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimator. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号