首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a problem concerning the distribution of a solid material in a given bounded control volume with the goal to minimize the potential power of the Stokes flow with given velocities at the boundary through the material-free part of the domain.We also study the relaxed problem of the optimal distribution of the porous material with a spatially varying Darcy permeability tensor, where the governing equations are known as the Darcy–Stokes, or Brinkman, equations. We show that the introduction of the requirement of zero power dissipation due to the flow through the porous material into the relaxed problem results in it becoming a well-posed mathematical problem, which admits optimal solutions that have extreme permeability properties (i.e., assume only zero or infinite permeability); thus, they are also optimal in the original (non-relaxed) problem. Two numerical techniques are presented for the solution of the constrained problem. One is based on a sequence of optimal Brinkman flows with increasing viscosities, from the mathematical point of view nothing but the exterior penalty approach applied to the problem. Another technique is more special, and is based on the “sizing” approximation of the problem using a mix of two different porous materials with high and low permeabilities, respectively. This paper thus complements the study of Borrvall and Petersson (Internat. J. Numer. Methods Fluids, vol. 41, no. 1, pp. 77–107, 2003), where only sizing optimization problems are treated.  相似文献   

2.
We study a system composed of a nonlinear Stokes flow in one subdomain coupled with a nonlinear porous medium flow in another subdomain. Special attention is paid to the mathematical consequence of the shear-dependent fluid viscosity for the Stokes flow and the velocity-dependent effective viscosity for the Darcy flow. Motivated by the physical setting, we consider the case where only flow rates are specified on the inflow and outflow boundaries in both subdomains. We recast the coupled Stokes–Darcy system as a reduced matching problem on the interface using a mortar space approach. We prove a number of properties of the nonlinear interface operator associated with the reduced problem, which directly yield the existence, uniqueness and regularity of a variational solution to the system. We further propose and analyze a numerical algorithm based on mortar finite elements for the interface problem and conforming finite elements for the subdomain problems. Optimal a priori error estimates are established for the interface and subdomain problems, and a number of compatibility conditions for the finite element spaces used are discussed. Numerical simulations are presented to illustrate the algorithm and to compare two treatments of the defective boundary conditions.  相似文献   

3.
We consider a viscous incompressible flow in an infinite horizontal domain bounded at the bottom by a smooth wall and at the top by a rough wall. The latter is assumed to consist in a plane wall covered with periodically distributed asperities which size depends on a small parameter, and with a fixed height. We assume that the flow is governed by the stationary Stokes equations. Using a boundary layer corrector we derive and analyze a first order asymptotic approximation of the flow.   相似文献   

4.
Sediment transport involves fluid flow in two different regions. In the free flow domain, the flow is governed by the viscous Newtonian fluid; sediment only occurs as suspended particles. In the porous domain however, the flow is governed by the pore geometry of the porous skeleton consisting of sedimented grains. In nature, the interface between these two domains is not a no-slip boundary for the free flow. In this study, we quantify how sediment transport is affected by the interaction of the two different flows. We do this by comparing fluid flow in no-slip bounded flow channels to fluid flow in channels containing both a free and a porous domain. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We consider the Navier–Stokes system with variable density and variable viscosity coupled to a transport equation for an order‐parameter c. Moreover, an extra stress depending on c and ?c, which describes surface tension like effects, is included in the Navier–Stokes system. Such a system arises, e.g. for certain models of granular flows and as a diffuse interface model for a two‐phase flow of viscous incompressible fluids. The so‐called density‐dependent Navier–Stokes system is also a special case of our system. We prove short‐time existence of strong solution in Lq‐Sobolev spaces with q>d. We consider the case of a bounded domain and an asymptotically flat layer with a combination of a Dirichlet boundary condition and a free surface boundary condition. The result is based on a maximal regularity result for the linearized system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This paper uses a time-weighted cross-sectional area measure in order to establish spatial decay estimates for the time-dependent Stokes slow flow of an incompressible viscous fluid in a semi- infinite cylindrical pipe of smooth cross section. The decay rate predicted in this paper depends only on the constant kinematic viscosity and the smallest positive eigenvalue of the free membrane problem as well as two geometric characteristics of the cross section of the pipe.  相似文献   

7.
Application of homogenization theory related to Stokes flow in porous media   总被引:1,自引:0,他引:1  
We consider applications, illustration and concrete numerical treatments of some homogenization results on Stokes flow in porous media. In particular, we compute the global permeability tensor corresponding to an unidirectional array of circular fibers for several volume-fractions. A 3-dimensional problem is also considered.  相似文献   

8.
We study the nonstationary flow of an incompressible fluid in a thin rectangle with an elastic plate as the upper part of the boundary. The flow is governed by a time-dependent pressure drop and an external force and it is modeled by Stokes equations. The dynamic of this fluid–structure interaction problem is studied in the limit when the thickness of the fluid domain tends to zero. Using the asymptotic techniques, we obtain for the effective plate displacement a sixth-order parabolic equation with a non standard boundary conditions. Results on existence, uniqueness and regularity of the solution are proved. The approximation is justified through a weak convergence theorem.  相似文献   

9.
In this article we analyze the well‐posedness (unique solvability, stability, and Céa's estimate) of a family of Galerkin schemes for the coupling of fluid flow with porous media flow. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers—Joseph—Saffman law. We consider the usual primal formulation in the Stokes domain and the dual‐mixed one in the Darcy region, which yields a compact perturbation of an invertible mapping as the resulting operator equation. We then apply a classical result on projection methods for Fredholm operators of index zero to show that use of any pair of stable Stokes and Darcy elements implies the well‐posedness of the corresponding Stokes—Darcy Galerkin scheme. This extends previous results showing well‐posedness only for Bernardi—Raugel and Raviart—Thomas elements. In addition, we show that under somewhat more demanding hypotheses, an alternative approach that makes no use of compactness arguments can also be applied. Finally, we provide several numerical results illustrating the good performance of the Galerkin method for different geometries of the problem using the MINI element and the Raviart—Thomas subspace of lowest order. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 721–748, 2011  相似文献   

10.
In this paper, we describe a layer potential analysis in order to show an existence result for an interface boundary value problem of Robin‐transmission type for the Stokes and Brinkman systems on Lipschitz domains in Euclidean setting, when the given boundary data belong to some Lp or Sobolev spaces associated to such domains. Applications related to an exterior three‐dimensional Stokes flow past two concentric porous spheres with stress jump conditions on the fluid‐porous interface are also considered. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents two contributions to the analysis of three-dimensional slow viscous flows in cylinders of circular section. First the vector axial eigenfunctions for this geometry, namely those that satisfy homogeneous boundary conditions on the flat end walls, are derived. Secondly a method is presented to find particular solutions to the inhomogeneous Stokes equations in this geometry. These new results, together with some results obtained earlier, are used to analyse slow natural convection in a vertical cylinder completely filled with a viscous liquid. The fluid motion is generated by the differential heating of the walls of the cylinder. The natural convection flow field is shown to be a superposition of an inhomogeneous field, the fields generated by the vector eigenfunctions and a Stokes flow field. A by-product of this work has been the identification of constraints on the boundary data that have to be satisfied in order for the eigenfunction expansions to work; this knowledge will be useful when attempts are made to prove the completeness of these Stokes flow eigenfunctions.Received: June 30, 2003; revised: February 26, 2004  相似文献   

12.
We derive computable a posteriori error estimates for the lowest order nonconforming Crouzeix-Raviart element applied to the approximation of incompressible Stokes flow. The estimator provides an explicit upper bound that is free of any unknown constants, provided that a reasonable lower bound for the inf-sup constant of the underlying problem is available. In addition, it is shown that the estimator provides an equivalent lower bound on the error up to a generic constant.

  相似文献   


13.
We study the Stokes system with non-homogeneous Fourier boundary conditions depending on a parameter, in a domain with periodic inclusions of the size of the period. Following the values of this parameter, we obtain at the limit a Darcy's law, a Brinkmann type equation or a Stokes type equation. We also present a physical model to which the results apply. This model describes the flow of an incompressible viscous fluid through a porous medium under the action of an exterior electric field.  相似文献   

14.
We investigate the stability and convergence of a fully implicit, linearly extrapolated second‐order backward difference time‐stepping scheme for the penalized Navier–Stokes equations modeling filtration through porous media. In the penalization approach, an extended Navier–Stokes equation is used in the entire computational domain with suitable resistance terms to mimic the presence of porous medium. It is widely used as an alternative to the heterogeneous approach in which different types of partial differential equations (PDEs) are used in fluid and porous subregions along with suitable continuity conditions at the interface. However, the introduction of extra resistance terms makes the penalized Navier–Stokes equations more nonlinear. We prove that the linearly extrapolated scheme is unconditionally stable and derive optimal order error estimates without any stability condition. To show feasibility and applicability of the approach, it is used to numerically solve a passive control problem in which flow around a solid body is controlled by adding porous layers on the surface. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 681–705, 2016  相似文献   

15.
The method of approximate particular solutions (MAPS) is used to solve the two‐dimensional Navier–Stokes equations. This method uses particular solutions of a nonhomogeneous Stokes problem, with the multiquadric radial basis function as a nonhomogeneous term, to approximate the velocity and pressure fields. The continuity equation is not explicitly imposed since the used particular solutions are mass conservative. To improve the computational efficiency of the global MAPS, the domain is split into overlapped subdomains where the Schwarz Alternating Algorithm is employed using velocity or traction values from neighboring subdomains as boundary conditions. When imposing only velocity boundary conditions, an extra step is required to find a reference value for the pressure at each subdomain to guarantee continuity of pressure across subdomains. The Stokes lid‐driven cavity flow problem is solved to assess the performance of the Schwarz algorithm in comparison to a finite‐difference‐type localized MAPS. The Kovasznay flow problem is used to validate the proposed numerical scheme. Despite the use of relative coarse nodal distributions, numerical results show excellent agreement with respect to results reported in literature when solving the lid‐driven cavity (up to Re = 10,000) and the backward facing step (at Re = 800) problems. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 777–797, 2015  相似文献   

16.
This paper concerns the slow viscous flow through an aggregate of concentric clusters of porous cylindrical particles with Happel boundary condition. An aggregate of clusters of porous cylindrical particles is considered as a hydro-dynamically equivalent to solid cylindrical core with concentric porous cylindrical shell. The Brinkman equation inside the porous cylindrical shell and the Stokes equation outside the porous cylindrical shell in their stream function formulations are used. The drag force acting on each porous cylindrical particle in a cell is evaluated. In certain limiting cases, drag force converges to pre-existing analytical results, such as, the drag on a porous circular cylinder and the drag on a solid cylinder in a Happel unit cell. Representative results are then discussed and presented in graphical forms. The hydrodynamic permeability of the membrane built up from porous particles is evaluated. The variation of hydrodynamic permeability with different parameters is graphically presented. Some new results are reported for flow pattern in the porous region. Being in resemblance with the model of colloid particles with a coating of porous layers due to adsorption phenomenon, results obtained through this model can be useful to study the membrane filtration process.  相似文献   

17.
We investigate the use of the Method of Fundamental Solutions (MFS) for solving Stokes flow problems with a free surface. We apply the method to the creeping planar Newtonian extrudate-swell problem and study the effect of the surface tension on the free surface. The results are in good agreement with existing finite element and boundary element solutions. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 667–678, 1998  相似文献   

18.
The problem considered is that of determining the fluid velocity for linear hydrostatics Stokes flow of slow viscous fluids from measured velocity and fluid stress force on a part of the boundary of a bounded domain. A variational conjugate gradient iterative procedure is proposed based on solving a series of mixed well-posed boundary value problems for the Stokes operator and its adjoint. In order to stabilize the Cauchy problem, the iterations are ceased according to an optimal order discrepancy principle stopping criterion. Numerical results obtained using the boundary element method confirm that the procedure produces a convergent and stable numerical solution.  相似文献   

19.
This article introduces an interior optimal control problem (OCP) in a two-dimensional domain with a highly oscillatory boundary governed by the stationary Stokes equations. We consider the periodic controls in the oscillating region of the domain and use the unfolding operators to characterize the optimal controls. We establish the convergences of optimal control, state, and pressure in a suitable space to the ones of the limit system in a fixed domain.  相似文献   

20.
This article deals with a problem arising in localization of the principal eigenvalue (PE) of the Stokes operator under the Dirichlet condition on the fine-grained random boundary of a domain contained in a cube of size t ? 1. The random microstructure is assumed identically distributed in distinct unit cubic cells and, in essence, independent. In this setting, the asymptotic behavior of the PE as t → ∞ is deterministic: it proves possible to find nonrandom upper and lower bounds on the PE which apply with probability that converges to 1. It was proved earlier that in two dimensions the nonrandom unilateral bounds on the PE can be chosen asymptotically equivalent, which implies the convergence in probability to a nonrandom limit of the appropriately normalized PE. The present article extends this result to higher dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号