首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
软体机器人结构机理与驱动材料研究综述   总被引:6,自引:0,他引:6  
软体机器人是一类新型机器人,具有结构柔软度高,环境适应性好,亲和性强,功能多样等特点,有着十分广阔的研究和应用前景. 智能材料在软体机器人结构设计及实际应用中扮演了重要的角色,其特殊的驱动机制极大拓展了软体机器人的功能. 介绍了软体机器人的发展和研究现状,按其应用场合及功能总结了几种典型的软体机器人. 从仿生机理的角度,介绍了蠕虫、弯曲爬行虫、鱼类游动等几类仿生运动机理以及其相应的软体机器人. 还按不同驱动类型将软体机器人归纳为气动、形状记忆合金、离子交换聚合物金属复合材料、介电高弹体、响应水凝胶、化学燃烧驱动等类型. 介绍了软体机器人的制作方法与工艺,分析了目前软体机器人研究的主要挑战,提出对未来研究的展望.   相似文献   

2.
The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuator(SPA)can produce large,complex responses with utilizing pressure as the only input source.In this work,a new approach that combines digital light processing(DLP)and injection-assisted post-curing is proposed to create SPAs that can realize different functionalities.To enable this,we develop a new class of photo-cross linked elastomers with tunable mechanical properties,good stretchability,and rapid curing speed.By carefully designing the geometry of the cavities embedded in the actuators,the resulting actuators can realize contracting,expanding,flapping,and twisting motions.In addition,we successfully fabricate a soft self-sensing bending actuator by injecting conductive liquids into the three-dimensional(3D)printed actuator,demonstrating that the present method has the potential to be used to manufacture intelligent soft robotic systems.  相似文献   

3.
Thermally responsive liquid crystal elastomers(LCEs) hold great promise in applications of soft robots and actuators because of the induced size and shape change with temperature. Experiments have successfully demonstrated that the LCE based bimorphs can be effective soft robots once integrated with soft sensors and thermal actuators. Here, we present an analytical transient thermo-mechanical model for a bimorph structure based soft robot, which consists of a strip of LCE and a thermal inert polymer actuated by an ultra-thin stretchable open-mesh shaped heater to mimic the unique locomotion behaviors of an inchworm. The coupled mechanical and thermal analysis based on the thermo-mechanical theory is carried out to underpin the transient bending behavior, and a systematic understanding is therefore achieved. The key analytical results reveal that the thickness and the modulus ratio of the LCE and the inert polymer layer dominate the transient bending deformation. The analytical results will not only render fundamental understanding of the actuation of bimorph structures, but also facilitate the rational design of soft robotics.  相似文献   

4.
机器人或机电装备通常由电机模组、液压元件、齿轮和铰链等硬质部件构成,具有动力足、精度高等优点,但在实现低噪声、高安全系数与亲和性等方面存在挑战.受自然界生物体的柔软特性与高环境适应性的启发,设计制造软体机器人是近年来机器人领域的研究热点.作为软体机器人的核心构成部分,智能软材料可在外界不同刺激下产生不同响应,具有材料柔韧、生物相容性好、易于制备、价格低廉等优点,可广泛应用于机器人的设计与制造.几类典型的具备驱动功能的智能软材料与结构获得广泛的研究,包括气动软体肌肉、形状记忆合金/聚合物、离子交换聚合物、介电高弹体、响应水凝胶等.本文介绍了多种驱动类型的软体智能机器人研究成果,并从软体智能机器人的系统设计与力学建模两个方面进行了归纳分析与讨论.   相似文献   

5.
Soft materials and structures have recently attracted lots of research interests as they provide paramount potential applications in diverse fields including soft robotics, wearable devices, stretchable electronics and biomedical engineering. In a previous work, an Euler–Bernoulli finite strain beam model with thickness stretching effect was proposed for soft thin structures subject to stiff constraint in the width direction. By extending that model to account for the transverse shear effect, a Timoshenko-type finite strain beam model within the plane-strain context is developed in the present work. With some kinematic hypotheses, the finite deformation of the beam is analyzed, constitutive equations are deduced from the theory of finite elasticity, and by employing the standard variational method, the equilibrium equations and associated boundary conditions are derived. In the limit of infinitesimal strain, the new model degenerates to the classical extensible and shearable elastica model. The corresponding incremental equilibrium equations and associated boundary conditions are also obtained. Based on the new beam model, analytical solutions are given for simple deformation modes, including uniaxial tension, simple shear, pure bending, and buckling under an axial load. Furthermore, numerical solution procedures and results are presented for cantilevered beams and simply supported beams with immovable ends. The results are also compared with the previously developed finite strain Euler–Bernoulli beam model to demonstrate the significance of transverse shear effect for soft beams with a small length-to-thickness ratio. The developed beam model will contribute to the design and analysis of soft robots and soft devices.  相似文献   

6.
We report the first attempt to model the contacts of an ionic polymer metal composite(IPMC) based tactile sensor. The tactile sensor comprises an IPMC actuator, an IPMC sensor and the target to be detected. The system makes use of multiple contacts to work: the actuator comes into contact with the sensor and pushes the movement of sensor; the contact between the sensor and the object detects the existence and the stiffness of the target. We integrate modeling of various physical processes involved in IPMC devices to form a simulation scheme. An iteration and optimization strategy is also described to correlate the experimental and simulation results of an IPMC bending actuator to identify the two key parameters used in electromechanical transduction. Modeling the multiple contacts will aid the design and optimization of such IPMC based soft robotics.  相似文献   

7.
Elastomeric membranes are frequently used in several emerging fields such as soft robotics and flexible electronics. For convenience of the structural design, it is very attractive to find simple analytical solutions to well describe their elastic deformations in response to external loadings. However, both the material/geometrical nonlinearity and the deformation inhomogeneity due to boundary constraints make it much challenging to get an exact analytical solution. In this paper, we focus on the inflation of a prestretched elastomeric circular membrane under uniform pressure, and derive an approximate analytical solution of the pressure–volume curve based upon a reasonable assumption on the shape of the inflated membrane. Such an explicit expression enables us to quantitatively design the material and geometrical parameters of the pre-stretched membrane to generate a target pressure–volume curve with prescribed peak point and initial slope. This work would be of help in the simplified mechanical design of structures involving elastomeric membranes.  相似文献   

8.
聚合物软材料兼具柔软性和大变形能力,作为一种智能材料在软体机器人等领域应用广泛.化学活性聚合物分子内包含具有较高反应活性的官能团,如环氧、酯键、羟基、羧基等,可以在一定条件下发生化学反应引起材料体积和性质变化.因此研究化学反应如何调控聚合物变形对开发新的功能型聚合物材料有重要指导意义.本文建立化学活性聚合物-弹性基底双层结构的理论模型并分析其在化学反应诱导下的有限弯曲行为.引入化学反应进度作为Helmholtz自由能独立的状态变量,考虑化学反应对聚合物体积变化和模量的影响,以及反应过程独立的能量耗散机制,并基于Neo-Hookean模型建立起各层内的超弹性本构关系.最后利用Newton-Raphson方法对反应完全时的平面应变稳态问题进行数值求解,得到不同几何和反应影响参数下各层内的弯曲变形和应力分布.  相似文献   

9.
Self-shaping materials such as shape memory polymers have recently drawn considerable attention owing to their high shape-changing ability in response to changes in ambient conditions, and thereby have promising applications in the biomedical, biosensing, soft robotics and aerospace fields. Their design is a crucial issue of both theoretical and technological interest. Motivated by the shape-changing ability of Towel Gourd tendril helices during swelling/deswelling, we present a strategy for realizing self-shaping function through the deformation of micro/nanohelices. To guide the design and fabrication of selfshaping materials, the shape equations of bent configurations, twisted belts, and helices of slender chiral composite are developed using the variation method. Furthermore, it is numerically shown that the shape changes of a chiral composite can be tuned by the deformation of micro/nanohelices and the fabricated fiber directions. This work paves a new way to create self-shaping composites.  相似文献   

10.
王郡  朱永宁  徐鉴 《力学学报》2019,51(1):198-208
研究柔性结构与流体间耦合作用,可以促进软体机器人的发展.通过速度快、精度高的数值模拟方法模拟水下机器人的实时运动轨迹,可以为真实实验提供测试方向与理论牵引,增大实验成功的可能性.本文研究有自主运动趋势的弹性绳在二维流场中的运动轨迹.首先,对弹性绳离散化建模并同时考虑拉压与扭转弹性力,从能量角度建立动力学方程,此模型可以较为真实地反映弹性绳内力对其运动产生的作用.然后基于半拉格朗日法建立流体求解器. 最后,提出简化的基于动量方程的浸入边界法作为耦合算法,通过直接修正网格速度代替浸入边界力法中力源项的作用.使用这种算法求解耦合作用兼具简便性与快速性.对弹性绳模型、流体模型与简化耦合模型依次解算,模拟了正弦形式波动弹性绳在水中的运动轨迹.结果显示,弹性绳在弹性内力与流固相互作用力共同影响下,该种新的浸入边界法可以实现对水下弹性绳运动轨迹的模拟.数值实验显示弹性绳的自主运动参考模型的初相位改变时,其前进方向会发生改变.该仿真模拟算法与平台可以为细长形软体水生机器人的研发提供参考.   相似文献   

11.
Horvath  Hanna Zsofia  Takacs  Denes 《Nonlinear dynamics》2022,108(3):2115-2126
Nonlinear Dynamics - Multistability is an area of interest in robotics and locomotion because the ability to achieve multiple configurations or generate multiple gaits allows a single robotic or...  相似文献   

12.
Xu  Tian  Fan  Jizhuang  Fang  Qianqian  Zhu  Yanhe  Zhao  Jie 《Nonlinear dynamics》2022,109(4):2595-2613
Nonlinear Dynamics - Dynamic model calibration is an important issue and has broad applications in robotics. However, most of the previous works only focus on the robot dynamic calibration on...  相似文献   

13.
柔性机械臂系统逆动力学及驱动规律的研究   总被引:1,自引:0,他引:1  
研究了柔性机械臂系统的逆动力学问题及其联接铰驱规律。在柔性多体系统动力学单向递推组集建模方法的基础上,建立了树形及含闭环的柔性多体系统正逆动力学问题同时计算的等价公式。通过一空间机械臂的数值仿真,讨论了构件的柔性效应对系统的驱动力(矩)及实际运动规律的影响。  相似文献   

14.
Meccanica - In modern robotics, providing assistance to those patients who have lost or injured their hand skills, assuring them an independent and healthy life through the design of exoskeleton...  相似文献   

15.
液晶弹性体(LCE)因其具有快速的光热响应和可逆变形等特性,在能量转换、软机器人和非接触控制等领域具有广泛的应用前景。本文利用液晶弹性体在外部光刺激下可与机械变形耦合的特性,建立了LCE简支梁的动态模型,研究了其在周期光照下的弯曲振动现象。首先建立了LCE简支梁的光驱动控制方程,然后通过振型叠加法获得方程的半解析解,再用Matlab软件编程计算其变化规律。计算结果表明,周期光照可以使LCE简支梁发生周期性振动,梁跨中的振动幅值可以通过阻尼因子、热弛豫时间、光照强度、光照周期和光照时间率来调节,振动平衡位置可以通过光强与热弛豫时间来调节,振动反应时间可以通过热弛豫时间与阻尼来调节。本文结果对光驱动运动的控制和光机能量转换系统的设计具有一定的指导意义。  相似文献   

16.
Nonlinear Dynamics - Moving-object tracking using a pan–tilt camera setup is quite a well-known task in robotics. However, the presented research addresses specific properties of the tracked...  相似文献   

17.
填充橡胶具有复杂的非弹性力学行为,主要包括应变率依赖的粘弹性效应和变形历史依赖的Mullins效应。当前大多数对填充橡胶的实验研究集中于室温条件,针对以上问题,本文通过单轴压缩实验系统地研究了温度对氟橡胶粘弹性和Mullins效应这两种非弹性行为的影响。首先采用多次循环加载获得了完全消除了Mullins效应的预处理试样。通过对原试样和预处理试样的单轴加卸载实验应力响应进行对比,发现Mullins效应不受变形温度和应变率的影响。通过对消除Mullins效应橡胶材料应力松弛实验结果分析,发现粘弹性行为不仅与变形的温度、应变率相关,还受加载应变的影响,表现为较大的加载应变会抑制氟橡胶的应力松弛。  相似文献   

18.
The advances in the field of robotics enabled successful exploration of the Moon and Mars. Over the years, rover missions have demonstrated deployment of various scientific payloads for robotic field geology on these extra-terrestrial bodies. The success of these missions clearly emphasises the need to further advance rover technology in order to maximise scientific return. The success of future robotic surface exploration missions will depend on two key factors – autonomy and mobility on soft sandy and unstructured terrains. The main contribution of this paper is that it brings together vital information pertaining to various terrain characterisation techniques into a single article. Special care is taken in structuring the paper so that all the relevant terrain characterisation methods that have been used in past planetary exploration missions and those under consideration for future space exploration missions are covered. This paper will not only lists advantages and disadvantages of various terrain characterisation techniques but also presents the methodology for evaluating and comparing terrain characterisation techniques and provides a trade-off study of existing and potential approaches that could improve the mobility of future planetary exploration rovers. This survey shows that further advances in currently deployed technology are required in order to develop intelligent, on-board sensing systems which will detect and identify near surface and sub-surface terrain properties to enhance the mobility of rovers.  相似文献   

19.
The aim of this article is to study the consequences of the active stiffening of a compliant mechanism on the workspace created by the deformation of its structure. In connection with recent soft robotics research integrating shape-memory alloys (SMAs), the variation in stiffness over time is here obtained by the thermal activation of a nickel–titanium SMA spring. The workspace is created by the deformation (in the strength of materials sense) controlled by two rotary actuators acting on a structure comprising two angled flexible beams. In addition to a natural variation in the elasticity modulus of the SMA component during its thermal activation, its shape reconfiguration adds a structural deformation modifying the workspace. The existence of a common area between the workspaces of the mechanism corresponding to the non-activated and activated modes of the SMA is preserved. Several compliance maps are determined from measurements using a laser tracker targeting a given position of the loaded structure. The impact of SMA pre-stretch on stiffness variability is compared to that of a change in Young’s modulus. Variations in the stiffness distributions between the two modes reveal interesting properties (stiffness sign inversion, anisotropy) for the future optimal design of compliant mechanisms with high versatility, associating the spatial positions of the effector with variable stiffness values.  相似文献   

20.
The study of free-floating manipulators is important for the success of robotics program in space and in the design of innovative robot systems which can operate over a large workspace. In order to study the fundamental theoretical and experimental issues encountered in space robotics, a closed-chain planar manipulator was built at Ohio University (OU) which floats on a flat table using air bearings. Due to the absence of external forces in the plane of the table and couples normal to this plane, the linear momentum in the plane and the angular momentum normal to this plane are conserved. It is well known that the linear momentum equations are holonomic while the angular momentum equation is nonholonomic. Due to this nonholonomic behavior, the path-planning schemes commonly used for fixed-base manipulators do not directly apply to free-floating manipulators. In this paper, we present an algorithm for motion planning of planar free-floating manipulators based on the inverse position kinematics of the mechanism. It is demonstrated that the inverse position kinematics algorithms, commonly used for fixed-base manipulators, can be successfully applied to free-floating manipulators using an iterative search procedure to satisfy the nonholonomic angular momentum constraints. This procedure results in paths identical to those predicted by inverse rate kinematics. The inverse position kinematics algorithm is then used to avoid singularities during motion to result in successful paths. The results of the simulation of this algorithm using parameter estimates of the OU free-floating robot are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号