首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We study the mechanism of proton transfer (PT) between the photoacid (8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS)) and the base acetate in aqueous solution using femtosecond vibrational spectroscopy. By probing the vibrational resonances of the photoacid, the accepting base, and the hydrated proton we find that intermolecular PT in this model system involves the transfer of the proton across several water molecules linking the donor-acceptor pair by hydrogen bonds (H-bonds). We find that at high base concentration the rate of PT is not determined by the mutual diffusion of acid and base but rather by the rate of Grotthuss-like conduction of the proton between molecules. This long-range PT requires an activated solvent configuration to facilitate the charge transfer.  相似文献   

2.
A femtosecond pump-probe, with approximately 150 fs resolution, as well as time-correlated single photon counting with approximately 10 ps resolution techniques are used to probe the excited-state intermolecular proton transfer from HPTS to water. The pump-probe signal consists of two ultrafast components (approximately 0.8 and 3 ps) that precede the relatively slow (approximately 100 ps) component. From a comparative study of the excited acid properties in water and methanol and of its conjugate base in basic solution of water, we propose a modified mechanism for the ESPT consisting of two reactive steps followed by a diffusive step. In the first, fast, step the photoacid dissociates at about 10 ps to form a contact ion pair RO-*...H3O+. The contact ion pair recombines efficiently to re-form the photoacid with a recombination rate constant twice as large as the dissociation rate constant. The first-step equilibrium constant value is about 0.5 and thus, at short times, <10 ps, only approximately 30% of the excited photoacid molecules are in the form of the conjugated base-proton contact ion pair. In the second, slower, step, of about 100 ps, the proton is separated by at least one water molecule from the conjugate base RO-. The separated proton and the conjugated base can recombine geminately as described by our previous diffusion-assisted model. The new two-step reactive model predicts that the population of the ROH form of HPTS will decrease with two time constants and the RO- population will increase by the same time constants. The proposed model fits the experimental data of this study as well as previous published experimental data.  相似文献   

3.
We study the effects of bromide salts on the rate and mechanism of the aqueous proton/deuteron‐transfer reaction between the photoacid 8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid (HPTS) and the base acetate. The proton/deuteron release is triggered by exciting HPTS with 400 nm femtosecond laser pulses. Probing the electronic and vibrational resonances of the photoacid, the conjugate photobase, the hydrated proton/deuteron and the accepting base with femtosecond visible and mid‐infrared pulses monitors the proton transfer. Two reaction channels are identified: 1) direct long‐range proton transfer over hydrogen‐bonded water bridges that connect the acid and base and 2) acid dissociation to produce fully solvated protons followed by proton scavenging from solution by acetate. We observe that the addition of salt affects the long‐range reaction pathway, and reduces both the rate at which protons are released to solution by HPTS and the rate at which solvated protons are scavenged from solution by acetate. We study the dependence of these effects on the nature and concentration of the dissolved salt.  相似文献   

4.
We studied the direct proton transfer (PT) from electronically excited D-luciferin to several mild bases. The fluorescence up-conversion technique is used to measure the rise and decay of the fluorescence signals of the protonated and deprotonated species of D-luciferin. From a base concentration of 0.25 M or higher the proton transfer rates to the fluoride, dihdyrogen phosphate or acetate bases are fast and comparable. The fluorescence signals are nonexponential and complex. We suggest that the fastest decay component arises from a direct proton transfer process from the hydroxyl group of D-luciferin to the mild base. The proton donor and acceptor molecules form an ion pair prior to photoexcitation. Upon photoexcitation solvent rearrangement occurs on a 1 ps time-scale. The PT reaction time constant is ~2 ps for all three bases. A second decay component of about 10 ps is attributed to the proton transfer in a contact pair bridged by one water molecule. The longest decay component is due to both the excited-state proton transfer (ESPT) to the solvent and the diffusion-assisted PT process between a photoacid and a base pair positioned remotely from each other prior to photoexcitation.  相似文献   

5.
We study the mechanism of proton transfer (PT) in the aqueous acid-base reaction between the photoacid 8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS) and acetate by probing the vibrational resonances of HPTS, acetate, and the hydrated proton with femtosecond mid-infrared laser pulses. We find that PT takes place in a distribution of hydrogen-bound reaction complexes that differ in the number of water molecules separating the acid and the base. The number of intervening water molecules ranges from 0 to 5, which, together with a strongly distance-dependent PT rate, explains the observed highly nonexponential reaction kinetics. The kinetic isotope effect for the reaction is determined to be 1.5, indicating that tunneling does not play a significant role in the transfer of the proton. Rather, the transfer mechanism is best described in terms of the adiabatic PT picture as it has been formulated by Hynes and co-workers [Staib, A.; Borgis, D.; Hynes, J. T. J. Chem. Phys. 1995, 102, 2487. Ando, K.; Hynes, J. T. J. Phys. Chem. B 1997, 101, 10464.], where solvent fluctuations play an essential role in forming the correct hydrogen-bond configuration and solvent polarization to facilitate PT.  相似文献   

6.
Fluorescence spectroscopy and femtosecond relaxation dynamics of 2-{[2-(2-hydroxyphenyl)benzo[d]oxazol-6-yl]methylene}malononitrile (diCN-HBO) and 2-{[2-(2-hydroxyphenyl)benzo[d]thiazol-6-yl]methylene}malononitrile (diCN-HBT) are studied to probe the excited-state proton transfer (ESPT) coupled charge transfer (ESCT) reaction. Unlike most of the ESPT/ESCT systems previously designed, in which ESCT takes place prior to ESPT, both diCN-HBO and diCN-HBT undergo ESPT, concomitantly accompanied with the charge transfer process, such that the ESPT reaction dynamics are directly coupled with solvent polarization effects. The long-range solvent polarization interactions result in a solvent-induced barrier that affects the overall proton transfer reaction rate. In cyclohexane, the rate constant of ESPT of diCN-HBO is measured to be 1.1 ps (9.1 x 10(11) s(-1)), which is apparently slower than that of 150 fs for the parent molecule 2-(2'-hydroxyphenyl)benzoxazole (HBO). Upon increasing solvent polarity to, for example, CH 3CN, the rate of ESPT is increased to 300 fs (3.3 x 10(12) s(-1)). The results are rationalized by the stabilization of proton transfer tautomer, which possesses a large degree of charge transfer character via an increase of the solvent polarity, such that the corresponding solvent-induced barrier is reduced. We thus demonstrate a prototypical system in which the photon-induced nuclear motion (proton transfer) is directly coupled with solvent polarization and the corresponding mechanism is reminiscent of that applied in an electron transfer process.  相似文献   

7.
We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25 M to 4 M. Using femtosecond midinfrared spectroscopy, we probe the vibrational responses of HPTS, its conjugate photobase, the hydrated proton/deuteron, and chloroacetate. The measurement of these four resonances allows us to follow the sequence of proton departure from the acid, its uptake by the water solvent, and its arrival at the base. In recent studies it was shown that proton transfer to carboxylate bases proceeds via Grotthuss conduction through a water wire connecting the acid and the base [Mohammed et al., Science 310, 83 (2005);Agnew. Chem. Int. Ed. 46, 1458 (2007);Siwick and Bakker, J. Am. Chem. Soc. 129, 13412 (2007); J. Phys. Chem. B 112, 378 (2008)]. Here we show that, for the weaker base chloroacetate, an alternative channel for proton transfer arises. In this channel the proton is first transferred to the water solvent and only later taken up from the water by the base. We study the base concentration dependence of the two competing channels.  相似文献   

8.
Steady-state and time-resolved techniques were employed to study the excited-state proton transfer (ESPT) from d-luciferin, the natural substrate of the firefly luciferase, to the mild acetate base in aqueous solutions. We found that in 1 M aqueous solutions of acetate or higher, a proton transfer (PT) process to the acetate takes place within 30 ps in both H(2)O and D(2)O solutions. The time-resolved emission signal is composed of three components. We found that the short-time component decay time is 300 and 600 fs in H(2)O and D(2)O, respectively. This component is attributed either to a PT process via the shortest water bridged complex available, ROH··H(2)O··Ac(-), or to PT taking place within a contact ion pair. The second time component of 2000 and 3000 fs for H(2)O and D(2)O, respectively, is attributed to ROH* acetate complex, whose proton wire is longer by one water molecule. The decay rate of the third, long-time component is proportional to the acetate concentration. We attribute it to the diffusion-assisted reaction as well as to PT process to the solvent.  相似文献   

9.
A time-resolved emission technique was employed to study the photoprotolytic cycle of two photoacids 2-naphtol-6-sulfonate (2N6S) and 2-naphtol-6,8-disulfonate (2N68DS) in ice in the presence of a low concentration of a weak base fluoride ion. We found that an additional proton-transfer process occurs in ice doped with F- ions. This reaction takes place between a mobile L-defect (created by static F- ions) and the photoacid. We used a diffusion assisted reaction model, based on the Debye-Smoluchowski equation, to account for the direct reaction of the L-defect with the excited photoacid.  相似文献   

10.
Alcohols, the simplest amphiprotic organic compounds, can exhibit either acidic or basic behavior by donating or accepting a proton. In this study, proton dissociation of a model photoacid in solution is explored by using time‐resolved spectroscopy, revealing quantitatively for the first time that alcohol acts as a Brønsted base because of H‐bonded cluster formation to enhance the reactivity. The protonated alcohol cluster, the alkyl oxonium ion, can be regarded as a key reaction intermediate in the well‐established alcohol dehydration reaction. This finding signifies, as in water, the cooperativity of protic solvent molecules to facilitate nonaqueous acid–base reactions.  相似文献   

11.
Excited-state proton transfer from the "super" photoacid 5,8-dicyano-2-naphthol to 2-butanol is faster in the enantiopure solvent than in its racemic form. The difference observed is discussed in terms of long-range order in homo- and heterodimers of 2-butanol.  相似文献   

12.
Steady-state and time-resolved emission techniques were employed to study the effect of acetate, a mild base, on the luminescence of curcumin in methanol and ethanol. We found that the steady-state emission intensity as well as the average fluorescence decay time are reduced by a factor of 5 when the acetate concentration is raised to about 1.8 M. We attribute this large effect to an excited-state proton transfer (ESPT) from the acidic groups of curcumin to the acetate anion. We analyze the experimental data in terms of an ESPT reaction occurring between a photoacid and a base.  相似文献   

13.
We have unraveled the effects of an amino substituent in the ortho position on the excited-state dynamics of 4-nitropyridine N-oxide by studying the picosecond fluorescence kinetics and femtosecond transient absorption of a newly synthesized compound, 2-butylamino-6-methyl-4-nitropyridine N-oxide, and by quantum chemical calculations. Similar to the parent compound, the S(1) state of the target molecule has significant charge-transfer character and shows a large (approximately 8000 cm(-1)) static Stokes shift in acetonitrile. Analysis of the experimental and the theoretical results leads, however, to a new scenario in which this intramolecular charge transfer triggers in polar, aprotic solvents an ultrafast (around 100 fs) intramolecular proton transfer between the amino and the N-O group. The electronically excited N-OH tautomer is subsequently subject to solvent relaxation and decays with a lifetime of approximately 150 ps to the ground state.  相似文献   

14.
15.
A series of pyrene photoacids is used to investigate excited-state proton transfer with time-dependent pump-probe spectroscopy. The deprotonation dynamics of a cationic photoacid, 8-aminopyrene-1,3,6-trisulfonic acid trisodium salt (APTS), shows single exponential dynamics( approximately 30 ps) in water. This is in contrast to what is observed for the neutral photoacids 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and 8-hydroxy-N,N,N',N',N",N"-hexamethylpyrene-1,3,6-trisulfonamide, which display biexponential dynamics. For the cationic photoacid, the vast majority of the intramolecular charge redistribution does not occur in the protonated state. Instead, the charge redistribution, which is responsible for the photoacidity and the observed spectroscopic changes, occurs primarily following the excited-state proton transfer. The lack of charge redistribution prior to proton transfer causes APTS to display single exponential kinetics. In contrast, the dynamics for the neutral photoacids are multiexponential because major charge redistribution precedes proton transfer followed by additional charge redistribution that accompanies proton transfer. Previous studies of HPTS in water are discussed in terms of the results presented here.  相似文献   

16.
A homologous series of four molecules in which a phenol unit is linked covalently to a rhenium(I) tricarbonyl diimine photooxidant via a variable number of p-xylene spacers (n = 0-3) was synthesized and investigated. The species with a single p-xylene spacer was structurally characterized to get some benchmark distances. Photoexcitation of the metal complex in the shortest dyad (n = 0) triggers release of the phenolic proton to the acetonitrile/water solvent mixture; a H/D kinetic isotope effect (KIE) of 2.0 ± 0.4 is associated with this process. Thus, the shortest dyad basically acts like a photoacid. The next two longer dyads (n = 1, 2) exhibit intramolecular photoinduced phenol-to-rhenium electron transfer in the rate-determining excited-state deactivation step, and there is no significant KIE in this case. For the dyad with n = 1, transient absorption spectroscopy provided evidence for release of the phenolic proton to the solvent upon oxidation of the phenol by intramolecular photoinduced electron transfer. Subsequent thermal charge recombination is associated with a H/D KIE of 3.6 ± 0.4 and therefore is likely to involve proton motion in the rate-determining reaction step. Thus, some of the longer dyads (n = 1, 2) exhibit photoinduced proton-coupled electron transfer (PCET), albeit in a stepwise (electron transfer followed by proton transfer) rather than concerted manner. Our study demonstrates that electronically strongly coupled donor-acceptor systems may exhibit significantly different photoinduced PCET chemistry than electronically weakly coupled donor-bridge-acceptor molecules.  相似文献   

17.
Optical steady-state and time-resolved spectroscopic methods were used to study the photoprotolytic reaction of oxyluciferin, the active bioluminescence chromophore of the firefly's luciferase-catalyzed reaction. We found that like D-luciferin, the substrate of the firefly bioluminescence reaction, oxyluciferin is a photoacid with pK(a)* value of ~0.5, whereas the excited-state proton transfer (ESPT) rate coefficient is 2.2 × 10(10) s(-1), which is somewhat slower than that of D-luciferin. The kinetic isotope effect (KIE) on the fluorescence decay of oxyluciferin is 2.5 ± 0.1, the same value as that of D-luciferin. Both chromophores undergo fluorescence quenching in solutions with a pH value below 3.  相似文献   

18.
Elementary steps in excited-state proton transfer   总被引:1,自引:0,他引:1  
The absorption of a photon by a hydroxy-aromatic photoacid triggers a cascade of events contributing to the overall phenomenon of intermolecular excited-state proton transfer. The fundamental steps involved were studied over the last 20 years using a combination of theoretical and experimental techniques. They are surveyed in this sequel in sequential order, from fast to slow. The excitation triggers an intramolecular charge transfer to the ring system, which is more prominent for the anionic base than the acid. The charge redistribution, in turn, triggers changes in hydrogen-bond strengths that set the stage for the proton-transfer step itself. This step is strongly influenced by the solvent, resulting in unusual dependence of the dissociation rate coefficient on water content, temperature, and isotopic substitution. The photolyzed proton can diffuse in the aqueous solution in a mechanism that involves collective changes in hydrogen-bonding. On longer times, it may recombine adiabatically with the excited base or quench it. The theory for these diffusion-influenced geminate reactions has been developed, showing nice agreement with experiment. Finally, the effect of inert salts, bases, and acids on these reactions is analyzed.  相似文献   

19.
The pressure dependence of the excited-state proton dissociation rate constant of four photoacids, 2-naphthol-6,8-disulfonate (2N68DS), 10-hydroxycamptothecin (10-CPT), 5-cyano-2-naphthol (5CN2), and 5,8-dicyano-2-naphthol (DCN2), are studied in methanol. The results are compared with the results of the pressure dependence study we recently conducted for several photoacids in water, ethanol, and propanol. The pressure dependence is explained using an approximate stepwise two-coordinate proton transfer model. The increase in rate, as a function of pressure, manifests a strong dependence of proton tunneling on the distance which decreases with an increase of pressure between the two oxygen atoms involved in the process. The decrease in the proton transfer rate with increasing pressure reflects the dependence of the reaction on the solvent relaxation rate. We found that, for the relatively weak photoacids 2N68DS, 10-CPT, and 5CN2, the proton transfer rate constant increases by a factor of about 5-8 at a pressure of about 1.5 GPa. For a strong photoacid like DCN2, the rate increase was only by a factor of 2.  相似文献   

20.
Quasiclassical ab initio simulations of the ionization dynamics in a (H(2)O)(17) cluster, the first water cluster that includes a fourfold coordinated (internally solvated) water molecule, have been carried out to obtain a detailed picture of the elementary processes and energy redistribution induced by ionization in a model of aqueous water. General features observable from the simulations are the following: (i) well within 100 fs following the ionization, one or more proton transfers are seen to take place from the "ionized molecule" to neighboring molecules and beyond, forming a hydronium ion and a hydroxyl radical; (ii) two water molecules close to the ionized water molecule play an important role in the reaction, in what we term a "reactive trimer." The reaction time is gated by the encounter of the ionized water molecule with these two neighboring molecules, and this occurs anytime between 10 and 50 fs after the ionization. The distances of approach between the ionized molecule and the neighboring molecules indeed display best the time characteristics of the transfer of a proton, and thus of the formation of a hydronium ion and a OH radical. These findings are consistent with those for smaller cyclic clusters, albeit the dynamics of the proton transfer displays more varieties in the larger cluster than in the small cyclic clusters. We used a partitioning scheme for the kinetic energy in the (H(2)O)(17) system that distinguishes between the reactive trimer and the surrounding "medium." The analysis of the simulations indicates that the kinetic energy of the surrounding medium increases markedly right after the event of ionization, a manifestation of the local heating of the medium. The increase in kinetic energy is consistent with a reorganization of the surrounding medium, electrostatically forced in a very short time by the water cation and in a longer time by the formation of the hydronium ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号