首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
操纵面间隙会引起结构非线性,容易诱发极限环颤振。根据设计需要,考虑操纵面中心间隙的影响,采用最小状态拟合技术对频域非定常 气动力进行有理函数拟合,采用分段函数描述间隙引起的非线性刚度,研究操纵面在间隙作用下的极限环颤振响应的行为特点。结果表明,由于 中心间隙的影响,系统会在低于线性颤振速度时就产生极限环振荡,同时,振荡幅值随飞行速度或中心间隙的增大而增大。  相似文献   

2.
A bifurcation analysis of a two-dimensional airfoil with a structural nonlinearity in the pitch direction and subject to incompressible flow is presented. The nonlinearity is an analytical third-order rational curve fitted to a structural freeplay. The aeroelastic equations-of-motion are reformulated into a system of eight first-order ordinary differential equations. An eigenvalue analysis of the linearized equations is used to give the linear flutter speed. The nonlinear equations of motion are either integrated numerically using a fourth-order Runge-Kutta method or analyzed using the AUTO software package. Fixed points of the system are found analytically and regions of limit cycle oscillations are detected for velocities well below the divergent flutter boundary. Bifurcation diagrams showing both stable and unstable periodic solutions are calculated, and the types of bifurcations are assessed by evaluating the Floquet multipliers. In cases where the structural preload is small, regions of chaotic motion are obtained, as demonstrated by bifurcation diagrams, power spectral densities, phase-plane plots and Poincaré sections of the airfoil motion; the existence of chaos is also confirmed via calculation of the Lyapunov exponents. The general behaviour of the system is explained by the effectiveness of the freeplay part of the nonlinearity in a complete cycle of oscillation. Results obtained using this reformulated set of equations and the analytical nonlinearity are in good agreement with previously obtained finite difference results for a freeplay nonlinearity.  相似文献   

3.
A typical airfoil section system with freeplay is investigated in the paper. The classic quasi-steady flow model is applied to calculate the aerodynamics, and a piecewise-stiffness model is adopted to characterize the nonlinearity of the airfoil section’s freeplay. There are two critical speeds in the system, i.e., a lower critical speed, above which the system might generate limit cycle oscillation, and an upper critical one, above which the system will flutter. Then a Poincaré map is constructed for the limit cycle oscillations by using piecewise-linear solutions with and without contact in the system. Through analysis of the Poincaré map, a series of equations which can determine the frequencies of period-1 limit cycle oscillations at any flight velocity are derived. Finally, these analytic results are compared to the results of numerical simulations, and a good agreement is found. The effects of freeplay value and contact stiffness ratio on the limit cycle oscillation are also analyzed through numerical simulations of the original system. Moreover, there exist multi-periods limit cycle oscillations and even complicated "chaotic" oscillations may occur, which are usually found in smooth nonlinear dynamic systems.  相似文献   

4.
This paper presents a novel mechanical attachment, i.e., nonlinear energy sink (NES), for suppressing the limit cycle oscillation (LCO) of an airfoil. The dynamic responses of a two-degree-of-freedom (2-DOF) airfoil coupled with an NES are studied with the harmonic balance method. Different structure parameters of the NES, i.e., mass ratio between the NES and airfoil, NES offset, NES damping, and nonlinear stiffness in the NES, are chosen for studying the effect of the LCO suppression on an aeroelastic system with a supercritical Hopf bifurcation or subcritical Hopf bifurcation, respectively. The results show that the structural parameters of the NES have different influence on the supercritical Hopf bifurcation system and the subcritical Hopf bifurcation system.  相似文献   

5.
The nonlinear aeroelastic response of a two-degree-of-freedom airfoil with freeplay and cubic nonlinearities in supersonic flows is investigated. The second-order piston theory is used to analyze a double-wedge airfoil. Then, the fold bifurcation and the amplitude jump phenomenon are detected by the averaging method and the multi-variable Floquet theory. The analytical results are further verified by numerical simulations. Finally, the influence of the freeplay parameters on the aeroelastic response is analyzed in detail.  相似文献   

6.
We investigate experimentally how controlled freeplay nonlinearity affects harvesting energy from a wing-based piezoaeroelastic energy harvesting system. This system consisits of a rigid airfoil which is supported by a nonlinear torsional spring (freeplay) in the pitch degree of freedom and a linear flexural spring in the plunge degree of freedom. By attaching a piezoelectric material (PSI-5A4E) to the plunge degree of freedom, we can convert aeroelastic vibrations to electrical energy. The focus of this study is placed on the effects of the freeplay nonlinearity gap on the behavior of the harvester in terms of cut-in speed and level of harvested power. Although the freeplay nonlinearity may result in subcritical Hopf bifurcations (catastrophic for real aircrafts), harvesting energy at low wind speeds is beneficial for designing piezoaeroelastic systems. It is demonstrated that increasing the freeplay nonlinearity gap can decrease the cut-in speed through a subcritical instability and gives the possibility to harvest energy at low wind speeds. The results also demonstrate that an optimum value of the load resistance exists, at which the level of the harvested power is maximized.  相似文献   

7.
The two-degree-of-freedom (2-DOF) airfoil system with freeplay nonlinearity in pitch is investigated numerically. The relation between eigenvalues and flutter speed has been analyzed. The effect of parameters of the freeplay nonlinearity on the system responses is obtained. The probability density function (PDF) and phase plane of the deterministic system have been studied and the results show that the amplitude of limit cycle oscillation (LCO) grows with mean airspeeds increasing. Marginal PDFs, bidimensional PDFs, random bifurcation, and the largest Lyapunov exponent are used in investigation of the random system. The results show that, for low and intermediate level turbulences, the marginal PDFs of system exhibit different characters at different airspeed ranges. However, for high level turbulence the marginal PDFs are similar in the whole airspeed region. The bidimensional PDF has different shapes in low level turbulence at pre- and post-flutter speeds, but the PDF keeps similar shape in high level turbulence. The random bifurcation analysis indicates the P-bifurcation can happen at both pre- and post-flutter speeds but the D-bifurcation never occurs. Numerical simulations approve the results.  相似文献   

8.
The dynamic aeroelastic behavior of an elastically supported airfoil is studied in order to investigate the possibilities of increasing critical flutter speed by exploiting its chord-wise flexibility. The flexible airfoil concept is implemented using a rigid airfoil-shaped leading edge, and a flexible thin laminated composite plate conformally attached to its trailing edge. The flutter behavior is studied in terms of the number of laminate plies used in the composite plate for a given aeroelastic system configuration. The flutter behavior is predicted by using an eigenfunction expansion approach which is also used to design a laminated plate in order to attain superior flutter characteristics. Such an airfoil is characterized by two types of flutter responses, the classical airfoil flutter and the plate flutter. Analysis shows that a significant increase in the critical flutter speed can be achieved with high plunge and low pitch stiffness in the region where the aeroelastic system exhibits a bimodal flutter behavior, e.g., where the airfoil flutter and the plate flutter occur simultaneously. The predicted flutter behavior of a flexible airfoil is experimentally verified by conducting a series of systematic aeroelastic system configurations wind tunnel flutter campaigns. The experimental investigations provide, for each type of flutter, a measured flutter response, including the one with indicated bimodal behavior.  相似文献   

9.
In this paper, the effect of a cubic structural restoring force on the flutter characteristics of a two-dimensional airfoil placed in an incompressible flow is investigated. The aeroelastic equations of motion are written as a system of eight first-order ordinary differential equations. Given the initial values of plunge and pitch displacements and their velocities, the system of equations is integrated numerically using a fourth order Runge-Kutta scheme. Results for soft and hard springs are presented for a pitch degree-of-freedom nonlinearity. The study shows the dependence of the divergence flutter boundary on initial conditions for a soft spring. For a hard spring, the nonlinear flutter boundary is independent of initial conditions for the spring constants considered. The flutter speed is identical to that for a linear spring. Divergent flutter is not encountered, but instead limit-cycle oscillation occurs for velocities greater than the flutter speed. The behaviour of the airfoil is also analysed using analytical techniques developed for nonlinear dynamical systems. The Hopf bifurcation point is determined analytically and the amplitude of the limit-cycle oscillation in post-Hopf bifurcation for a hard spring is predicted using an asymptotic theory. The frequency of the limit-cycle oscillation is estimated from an approximate method. Comparisons with numerical simulations are carried out and the accuracy of the approximate method is discussed. The analysis can readily be extended to study limit-cycle oscillation of airfoils with nonlinear polynomial spring forces in both plunge and pitch degrees of freedom.  相似文献   

10.
Chen  Y. M.  Li  W. L.  Yan  B. F.  Liu  J. K. 《Nonlinear dynamics》2021,103(1):327-341
Nonlinear Dynamics - The aeroelastic system of an airfoil with a control surface usually encounters non-smooth nonlinearities such as freeplay. Freeplay can have a significant influence on...  相似文献   

11.
Nonlinear dynamic behaviors of an aeroelastic airfoil with free-play in transonic air flow are studied. The aeroelastic response is obtained by using time-marching approach with computational fluid dynamics (CFD) and reduced order model (ROM) techniques. Several standardized tests of transonic flutter are presented to validate numerical approaches. It is found that in time-marching approach with CFD technique, the time-step size has a significant effect on the calculated aeroelastic response, especially for cases considering both structural and aerodynamic nonlinearities. The nonlinear dynamic behavior for the present model in transonic air flow is greatly different from that in subsonic regime where only simple harmonic oscillations are observed. Major features of the responses in transonic air flow at different flow speeds can be summarized as follows. The aeroelastic responses with the amplitude near the free-play are dominated by single degree of freedom flutter mechanism, and snap-though phenomenon can be observed when the air speed is low. The bifurcation diagram can be captured by using ROM technique, and it is observed that the route to chaos for the present model is via period-doubling, which is essentially caused by the free-play nonlinearity. When the flow speed approaches the linear flutter speed, the aeroelastic system vibrates with large amplitude, which is dominated by the aerodynamic nonlinearity. Effects of boundary layer and airfoil profile on the nonlinear responses of the aeroelastic system are also discussed.  相似文献   

12.
Aeroelastic analyses are performed for a 2-D typical section model with multiple nonlinearities. The differences between a system with multiple nonlinearities in its pitch and plunge spring and a system with a single nonlinearity in its pitch are thoroughly investigated. The unsteady supersonic aerodynamic forces are calculated by the doublet point method (DPM). The iterative V-g method is used for a multiple-nonlinear aeroelastic analysis in the frequency domain and the freeplay nonlinearity is linearized using a describing function method. In the time domain, the DPM unsteady aerodynamic forces, which are based on a function of the reduced frequency, are approximated by the minimum state approximation method. Consequently, multiple structural nonlinearities in the 2-D typical wing section model are influenced by the pitch to plunge frequency ratio. This result is important in that it demonstrates that the flutter speed is closely connected with the frequency ratio, considering that both pitch and plunge nonlinearities result in a higher flutter speed boundary than a conventional aeroelastic system with only one pitch nonlinearity. Furthermore, the gap size of the freeplay affects the amplitude of the limit cycle oscillation (LCO) to gap size ratio.  相似文献   

13.
The influences of actuator nonlinearities on actuator dynamics and the aeroelastic characteristics of a control fin were investigated by using iterative V-g methods in subsonic flows; in addition, the doublet-hybrid method (DHM) was used to calculate unsteady aerodynamic forces. The changes of actuator dynamics induced by nonlinearities, such as backlash or freeplay, and the variations of flutter boundaries due to the changes of actuator dynamics were observed. Results show that the aeroelastic characteristics can be significantly dependent on actuator dynamics. Thus, the actuator nonlinearities may play an important role in the nonlinear aeroelastic characteristics of an aeroelastic system. The present results also indicate that it is necessary to seriously consider the influence of actuator dynamics on the flutter characteristics at the design stage of actuators to prevent aeroelastic instabilities of aircraft or missiles.  相似文献   

14.
This paper studies the delayed feedback control of flutter of a two-dimensional airfoil using a sliding mode control (SMC) method. The dynamic equation of airfoil flutter is firstly established using the Lagrange method, in which the cubic hardening spring nonlinearity of pitch stiffness is considered. Then, the state equation with time delay is transformed into a standard state equation with implicit time delay by a special integral transformation. Next a nonlinear time-delay controller is designed using the SMC method. Finally the effectiveness of the proposed controller is verified through numerical simulations. Simulation results indicate that time delay in the control system has significant influence on the control performance. Control failure may happen if time delay is not considered in control design. The time-delay controller proposed is effective in suppressing the airfoil flutter with either small or large control time delay.  相似文献   

15.
Nonlinear effects such as friction and freeplay on the control surfaces can affect aeroelastic dynamics during flight. In particular, these nonlinearities can induce limit cycle oscillations (LCO), changing the system stability, and because of this it is essential to employ computational methods to predict this type of motion during the aircraft development cycle. In this context, the present article presents a matrix notation for describing the Hénon’s method used to reduce errors when considering piecewise linear nonlinearities in the numerical integration process. In addition, a new coordinate system is used to write the aeroelastic system of equations. The proposal defines a displacement vector with generalized and physical variables to simplify the computational implementation of the Hénon’s technique. Additionally, the article discusses the influence of asymmetric freeplay and friction on the LCO of an airfoil with control surface. The results show that the extended Hénon’s technique provides more accurate LCO predictions, that friction can change the frequency and amplitude of these motions, and the asymmetry of freeplay is important to determine the LCO behavior.  相似文献   

16.
The limit cycle oscillation (LCO) behaviors of an aeroelastic airfoil with free-play for different Mach numbers are studied. Euler equations are adopted to obtain the unsteady aerodynamic forces. Aerodynamic and structural describing functions are employed to deal with aerodynamic and structural nonlinearities, respectively. Then the flutter speed and flutter frequency are obtained by V-g method. The LCO solutions for the aeroelastic airfoil obtained by using dynamically linear aerodynamics agree well with those obtained directly by using nonlinear aerodynamics. Subsequently, the dynamically linear aerodynamics is assumed, and results show that the LCOs behave variously in different Mach number ranges. A subcritical bifurcation, consisting of both stable and unstable branches, is firstly observed in subsonic and high subsonic regime. Then in a narrow Mach number range, the unstable LCOs with small amplitudes turn to be stable ones dominated by the single degree of freedom flutter. Meanwhile, these LCOs can persist down to very low flutter speeds. When the Mach number is increased further, the stable branch turns back to be unstable. To address the reason of the stability variation for different Mach numbers at small amplitude LCOs, we find that the Mach number freeze phenomenon provides a physics-based explanation and the phase reversal of the aerodynamic forces will trigger the single degree of freedom flutter in the narrow Mach number range between the low and high Mach numbers of the chimney region. The high Mach number can be predicted by the freeze Mach number, and the low one can be estimated by the Mach number at which the aerodynamic center of the airfoil lies near its elastic axis. Influence of angle of attack and viscous effects on the LCO behavior is also discussed.  相似文献   

17.
The spectrograph is a signal-processing tool often used for the frequency domain analysis of time-varying signals. When the signal to be analyzed is a function of time, the spectrograph represents the frequency content of the signal as a sequence of power spectra that change with time. In this paper, the usefulness of the technique is demonstrated in its application to the analysis of the time history response of a nonlinear aeroelastic system. The aeroelastic system is modelled analytically as a two-dimensional, rigid airfoil section free to move in both the bending and pitching directions and possessing a rigid flap. The airfoil is mounted by torsional and translational springs attached at the elastic axis, and the flap is used to provide the forcing input to the system. The nonlinear system is obtained by introducing a freeplay type of nonlinearity in the pitch degree-of-freedom restoring moment. The airfoil is immersed in an aerodynamic flow environment, modelled using incompressible thin airfoil theory for unsteady oscillatory motion. The equations of motion are solved using a fourth-order Runge–Kutta numerical integration technique to provide time-history solutions of the response of the airfoil in the pitch and plunge directions. Time-histories are obtained for the nonlinear responses of the linear and nonlinear aeroelastic systems to a sine-sweep input. The time-histories are analyzed using the spectrographic technique, and the frequency content of the response is plotted directly as a function of the input frequency. Results show that the combination of the sine-sweep input with the spectrographic analysis permits a unique insight into the behavior of the nonlinear system with a minimum of testing. It is shown that the frequency of the nonlinear system response is a function of the input frequency and one other characteristic frequency that can be associated with the limit cycle oscillations of the same nonlinear system subject to a transient input.  相似文献   

18.
We design a piezoaeroelastic energy harvester consisting of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. We choose the linear springs to produce the minimum flutter speed and then implement a linear velocity feedback to reduce the flutter speed to any desired value and hence produce limit-cycle oscillations at low wind speeds. Then, we use the center-manifold theorem to derive the normal form of the Hopf bifurcation near the flutter onset, which, in turn, is used to choose the nonlinear spring coefficients that produce supercritical Hopf bifurcations and increase the amplitudes of the ensuing limit cycles and hence the harvested power. For given gains and hence reduced flutter speeds, the harvested power is observed to increase, achieve a maximum, and then decrease as the wind speed increases. Furthermore, the response undergoes a secondary supercritical Hopf bifurcation, resulting in either a quasiperiodic motion or a periodic motion with a large period. As the wind speed is increased further, the response becomes eventually chaotic. These complex responses may result in a reduction in the generated power. To overcome this adverse effect, we propose to adjust the gains to increase the flutter speed and hence push the secondary Hopf bifurcation to higher wind speeds.  相似文献   

19.
In this paper, a new frequency-domain based approach for the investigation of aeroelasticity problems is introduced that is capable of handling both linear and nonlinear problems. This approach is based on coupling a conceptual method used in a structural dynamic analysis and an optimum equivalent linear frequency response function (OELF). Additionally, a new criterion for determining the flutter speed and the instability of nonlinear systems is introduced that is based on the condition number of the aeroelastic matrices. Due to the global nature of the condition number, the new criterion proves to be efficient and simple to use. To examine the efficiency of the new technique, a two-dimensional nonlinear airfoil with an unsteady aerodynamic model is considered.  相似文献   

20.
结合基于$k$-$\omega$的SST两方程湍流模型,求解雷诺平 均Navier-Stokes方程获得定常和非定常气动力,耦合翼型弹性运动方程,在时间 域内模拟了不同厚度对称翼型在不同迎角下的气动弹性动态过程, 并重点研究了较大迎角下的不同厚度翼型流场特征和气动弹性的性质,研究结果表明:在论 文所涉及的参数情况下,对于迎角从零到大迎角范围,翼型颤振临界速度随迎角的变化不是 单调的. 翼型颤振临界速度迅速下降的起始迎角比最大升力系数对应的迎角小很多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号