首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
金方圆  鄂书林  王海峰  陈波 《发光学报》2012,33(10):1143-1148
为研究双温方程中电子热传导项和电子与晶格耦合项对激光辐照物体表面温度场求解的影响,对这两项施加了约束条件。由于飞秒和亚皮秒激光与物质相互作用时间短,电子与晶格来不及耦合,所以对耦合项施加时间约束;根据相分离条件(CPPS),对热传导项施加空间约束。利用有限元方法建立了激光烧蚀金属铜膜表面的有限元模型。通过分析双温方程中热传导项和耦合项对计算结果的影响,发现短脉冲激光与铜金属相互作用过程中电子与晶格耦合项可以忽略,而传导项不可忽略。求解适当激光功率下的双温方程,得到了激光作用中心电子与晶格在不同脉冲宽度激光辐照下的温度变化关系。根据100 fs激光作用后晶格温度场的空间分布情况,研究了激光作用的相分离区域、相爆炸区域以及熔融区域的分布情况。  相似文献   

2.
In this study, we develop a laser annealing system for In2O3Sn (ITO) to carry out heat treatment on oxides with high melting temperature on substrates with low melting temperature. It is known that the working temperature of traditional heat treatments is usually limited by the melting point of the substrate materials. To overcome this problem, we apply a laser annealing technique to modify the film properties, and to measure the electrical and surface properties, we use Hall measurement, a four-point probe, and an atomic force microscope in our experiment. We will discuss how the annealing is affected by the laser machining parameters, including the beam profile, intensity distribution, laser spot overlap, and laser operation mode. We will further show through experimental results that the beam profile greatly affects the surface roughness of the ITO films. With the use of a uniform beam profile with proper laser intensity, the surface roughness and the sheet resistance of the ITO films can be reduced from 23 nm to 4.2 nm and from 417 Ω/sq to 400.4 Ω/sq, respectively.  相似文献   

3.
This paper presents a comparison between simulation and experimental results of the melting process of metallic material by a pulsed laser source Nd-YAG. The simulations of temperature and velocity fields of melted material were done by solving the transient heat transfer and fluid-flow equations. Variations of the thermophysical properties were considered. Furthermore, the model included the effects of the surface-tension gradient on the fluid surface and the buoyancy force. The simulation was useful in improving our understanding of the phenomena occurring in the treated material. Using a laser triangulation sensor, an experimental study was also conducted on the surface profile of the melted zones to seek a relationship between the so-called keyhole effect and the laser triangulation measurements. The keyhole effect induced strong surface deformations and often formed cavities, which were undesirable in the surface treatment process. The laser power, energy density, and treatment duration could be optimized to prevent the keyhole effect. The predicted laser melted zone (LMZ) morphology was in good agreement with the corresponding experimental measurements for various irradiation conditions, as long as the keyhole effect did not occur.  相似文献   

4.
Laser technology has shown fast growth due to its demands in material processing and manufacturing. Laser material processing includes various applications like cutting, welding, drilling, cladding and surface treatment. In laser surface treatment, the material properties at the surface are altered through surface alloying and transformation hardening. In this study, an enthalpy-based computational model is developed for analyzing laser heating and melting of metals. The solution to the problem is obtained by using a finite element method and validated by comparing the results with that given by an analytical solution to a limiting case problem. A solution algorithm and a computational code are developed to estimate the temperature distribution, solid-liquid interface location and shape and size of the molten pool. The computational model is validated by comparing results with a limiting case analytical model. The study is conducted to analyze the heating rate, the heat affected zone, and the shape and size of the molten pool using a Gaussian laser beam.  相似文献   

5.
谭胜  吴建军  黄强  张宇  杜忻洳 《物理学报》2019,68(5):57901-057901
为了分析飞秒激光烧蚀过程,在双相延迟模型的基础上建立了双曲型热传导模型.模型中考虑了靶材的加热、蒸发和相爆炸,还考虑了等离子体羽流的形成和膨胀及其与入射激光的相互作用,以及光学和热物性参数随温度的变化.研究结果表明:等离子体屏蔽对飞秒激光烧蚀过程有重要的影响,特别是在激光能量密度较高时;两个延迟时间的比值对飞秒激光烧蚀过程中靶材的温度特性和烧蚀深度有较大的影响;飞秒激光烧蚀机制主要以相爆炸为主.飞秒激光烧蚀的热影响区域较小,而且热影响区域的大小受激光能量密度的影响较小.计算结果与文献中实验结果的对比表明基于双相延迟模型的飞秒激光烧蚀模型能有效对飞秒激光烧蚀过程进行模拟.  相似文献   

6.
The interaction of a transversely excited atmospheric (TEA) CO2 laser with chromium oxynitride (CrON) coating deposited on a AISI 304 steel substrate was considered. The results have shown that CrON was surface-modified by the laser beam of 45 J/cm2 energy density. The energy absorbed from the TEA CO2 laser beam was partially converted into thermal energy, which has generated a series of effects such as melting, vaporization of the molten material, and shock waves in the vapor and in the solid. Morphological manifestations on the CrON coating surface can be summarized as follows: non-uniform features with ablation and appearance of crater-like form (central zone of interaction); appearance of three damaged areas and presence of hydrodynamic effects with resolidified droplets (periphery zone of interaction). In case of applied energy density the interaction of laser radiation with CrON has been always followed by plasma creation in front of the coating. PACS 79.20.Ds; 61.80.Ba  相似文献   

7.
A three-dimensional, semi-stationary, simplified thermal numerical model was developed. The average cutting front temperature difference in disk and CO2 laser beam fusion cutting of 90MnCrV8 was estimated by computing the conductive power loss. Basing on heat affected zone extension experimentally measured and using an inverse methodology approach, the unknown thermal load on the cutting front during laser cutting was calculated. The accuracy of the numerical power loss estimation was evaluated comparing the results from simulation with the ones from analytical models. A good agreement was found for all the test cases considered in this study. The conduction losses estimation was used for justifying the lower quality of disk laser cuts due to the lower average cut front temperature. This results in the increase of viscosity of molten material and in the subsequent more difficult ejection of the melted material from the cut kerf.  相似文献   

8.
Surface modification of AISI316 stainless steel by laser melting was investigated experimentally using 2 and 4 kW laser power emitted from a continuous wave CO2 laser at different specimen scanning speeds ranged from 300 to 1500 mm/min. Also, an investigation is reported of the introduction of carbon into the same material by means of laser surface alloying, which involves pre-coating the specimen surfaces with graphite powder followed by laser melting. The aim of these treatments is to enhance corrosion resistance by the rapid solidification associated with laser melting and also to increase surface hardness without affecting the bulk properties by increasing the carbon concentration near the surface. Different metallurgical techniques such as optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) were used to characterize the microstructure of the treated zone. The microstructures of the laser melted zones exhibited a dendritic morphology with a very fine scale with a slight increase in hardness from 200 to 230 Hv. However, the laser alloyed samples with carbon showed microstructure consisting of γ dendrite surrounded by a network of eutectic structures (γ+carbide). A significant increase in hardness from 200 to 500 Hv is obtained. Corrosion resistance was improved after laser melting, especially in the samples processed at high laser power (4 kW). There was shift in Icorr and Ecorr toward more noble values and a lower passive current density than that of the untreated materials. These improvements in corrosion resistance were attributed to the fine and homogeneous dendritic structure, which was found throughout the melted zones. The corrosion resistance of the carburized sample was lower than the laser melted sample.  相似文献   

9.
Friction stir welding is a promising solid state joining process for high strength aluminum alloys. Though friction stir welding eliminates the problems of fusion welding as it is performed below melting temperature (Tm), it creates severe plastic deformation. Friction stir welds of some aluminum alloys exhibit relatively poor corrosion resistance. This research enhanced the corrosion properties of such welds through diode laser surface melting.A friction stir weld of aluminum alloy 2024 T351 was laser melted using a 1 kW diode laser. The melt-depth and microstructure were investigated using optical and scanning electron microscopy. The melt zone exhibited epitaxially grown columnar grains. At the interface between the melted and the un-melted zone, a thick planar boundary was observed. Energy dispersive spectroscopy analyzed the redistribution of elemental composition. The corrosion properties of the laser melted and native welds were studied in aqueous 0.5 M sodium chloride solution using open circuit potential and cyclic potentiodynamic polarization. The results show noticeable increase in the pit nucleation resistance (390 mV) after the laser surface treatment. The repassivation potential was nobler to the corrosion potential after the laser treatment, which confirmed that the resistance to pit growth was improved.  相似文献   

10.
EU194 in the United Kingdom   总被引:2,自引:0,他引:2  
This paper describes some of the results obtained in the United Kingdom within the Eureka Eurolaser Project EU194 — Industrial Applications of High-Power CO2 Lasers. Areas selected include laser welding of aluminium alloys, in particular with respect to the tensile and formability properties of the welds produced; a new technique, involving laser beam spinning, is described for thick section cutting of mild steel using only modest laser power; a comparison of thermal cutting processes is presented in terms of the kerf widths, speed, squareness, roughness and size of heat affected zone produced; a mathematical model for the welding of thin sheet material is described. along with the results of experimental verification of the predictive capabilities of the model; and finally, laser welding of tailored blanks for application in the automotive industry is described, with examples of two particular areas where this technology might be used to advantage.  相似文献   

11.
A high-power continuous CO2 laser (4 kW) can provide energy capable of causing melting or even, with a special treatment of the surface, vaporization of an XC42-steel sample. The laser–metal interaction causes an energetic machining mechanism, which takes place according to the assumption that the melting front precedes the laser beam, such that the laser beam interacts with a preheated surface whose temperature is near the melting point. The proposed model, obtained from the energy balance during the interaction time, concerns the case of machining with an inert gas jet and permits the calculation of the characteristic parameters of the groove according to the characteristic laser parameters (absorbed laser energy and impact diameter of the laser beam) and allows the estimation of the quantity of the energy causing the thermal affected zone (TAZ). This energy is equivalent to the heat quantity that must be injected in the heat propagation equation. In the case of a semi-infinite medium with fusion temperature at the surface, the resolution of the heat propagation equation gives access to the width of the TAZ.  相似文献   

12.
Laser sintering of a two-component metal powder layer on top of sintered layers, with a moving circular Gaussian laser beam is modeled numerically. The overlap between the adjacent scanning lines, as well as the binding between the newly sintered layer and existing sintered layers underneath through melting, are also considered. The governing equation is formulated by a temperature-transforming model, with partial shrinkage induced by melting taken into account. The liquid flow of the molten low melting point metal powders driving by capillary and gravity forces is formulated by Darcy’s law. The effects of the dominant processing parameters, including the moving laser beam intensity, scanning speed, and the number of the existing sintered layers underneath on the shape of the heat affected zone (HAZ) are investigated. PACS 44.05.+e; 81.20.Ev  相似文献   

13.
Spontaneous melting of a perfect crystalline graphene model in 2D space is studied via molecular dynamics simulation. Model containing 104 atoms interacted via long-range bond-order potential (LCBOP) is heated up from 50 to 8,450 K in order to see evolution of various thermodynamic quantities, structural characteristics and occurrence of various structural defects. We find that spontaneous melting of our graphene model in 2D space exhibits a first-order behaviour of the transition from solid 2D graphene sheet into a ring-like structure 2D liquid. Occurrence and clustering of Stone–Wales defects are the first step of melting process followed by breaking of C–C bonds, occurrence/growth of various types of vacancies and multi-membered rings. Unlike that found for melting of a 2D crystal with an isotropic bonding, these defects do not occur homogeneously throughout the system, they have a tendency to aggregate into a region and liquid phase initiates/grows from this region via tearing-like or crack-propagation-like mechanism. Spontaneous melting point of our graphene model occurs at Tm = 7,750 K. The validity of classical nucleation theory and Berezinsky–Kosterlitz–Thouless–Nelson–Halperin–Young (BKTNHY) one for the spontaneous melting of our graphene model in strictly 2D space is discussed.  相似文献   

14.
由于高能激光武器破坏目标的瞬时性、反应的复杂性以及测试成本高昂,使得通过实验评估激光武器的毁伤威力具有很大难度,因此,通过数值模拟的方法对其毁伤威力进行建模仿真可以有效评估其攻防性能。在计算温度场时考虑了相变情况下材料导热率的变化以及材料熔化时熔化潜热对温度场的影响,建立了相应的位移场、应力场数理模型并进行模拟。将多物理场模型整合到仿真系统中,对激光武器打击目标的过程进行了系统仿真,模拟出不同工况下高能激光武器对目标的毁伤效果。仿真结果表明,激光辐照Al材料3.01 s时,激光实时功率密度为0.930 8 W/cm2,材料外壁面温度达到600℃,内壁面温度为352.522℃,此时材料表面刚刚达到熔化,但其所受应力已使材料发生脆性断裂,材料已被破坏。  相似文献   

15.
We report a model of nanosecond laser ablation of compound semiconductors taking into account stoichiometry loss as a result of different volatilities of the material components. The model is based on the heat-flow equation for the bulk material and the diffusion equation for its atomic constituents and takes into account variations of material properties as functions of temperature and composition. Changing the optical response which results from stoichiometry violation is described within the concept of an effective medium and a multi-layer reflection model is applied. For cadmium telluride, as an example, the processes of ablation, melting, and resolidification under the action of a KrF laser have been studied in dynamics for particular experimental conditions in a wide range of laser fluences from the ablation threshold to the plasma shielding regimes described by the effective plasma plume representation. Multi-shot irradiation regimes have been investigated and the mechanism of the irradiation-controlled stoichiometry reversal has been elucidated.  相似文献   

16.
The paper introduces a 3D computer simulation model of the melting and recrystallization process of amorphous Si induced by pulsed laser irradiation. The model takes into account the temperature dependence of thermal and optical properties of crystalline, amorphous and liquid Si. The melting process is described by introducing for each volume element of melt pool the characteristic times of beginning of melting, end of melting and nucleation of a stable nucleus. The solution of heat equations of liquid and solid phases also provides one with the nucleation rates and temperatures. These data enable one to discriminate whether amorphous or crystalline phases are really allowed to be formed. Two examples of computer simulation are carried out to show the outputs of the model. Received: 7 February 2000 / Accepted: 28 March 2000 / Published online: 9 August 2000  相似文献   

17.
Laser cutting of glass using the controlled fracture technique leads to cut path deviation at the leading and trailing edges of the float glass sheet. In this technique, thermal stresses are used to induce the crack, and the material is separated along the cutting path by extending the crack. We show that the cut path deviation is partly due to high magnitudes of thermal stresses generated near the sheet edges. The absorption of intense radiation from the CO2 and diode laser beams in the glass causes local temperature increases and consequently generates different thermal fields and stress distributions due to surface and volumetric heat absorption. In this paper, we report the effect of the CO2 and diode laser wavelength interaction with the float glass and its effect on the magnitudes of thermal stresses generated near the edges of the glass sheet. We simulate the distribution of the thermal stress and temperature using finite-element analysis software Abaqus and validate it against the experimental data. We show that the CO2 laser produces a lower surface quality and a larger cut path deviation at the leading and trailing edges of the glass sheet as compared to the diode laser.  相似文献   

18.
A three dimensional model was proposed to simulate high power laser clad TiC/NiCrBSiC composite coatings on Ti6Al4V alloys. The temperature distribution, temperature curves on different nodes, three dimensional shape and size of TiC melting region, molten pool and heat affected zone (HAZ) of the substrate were obtained. To have a clear physical insight into the phase transformation and microstructure evolution in the coatings during laser cladding process, a theoretical kinetic analysis was performed to elucidate the nucleation, growth velocity, and size of TiC particles on the basis of simulated temperature curves of the molten pool. A good quality TiC/NiCrBSiC composite coating with low dilution rate and excellent metallurgical bond was fabricated under optimal processing parameters using powder mixture of TiC and NiCrBSiC as clad material and cuboid of Ti6Al4V alloys as substrate. To validate the reliability of the proposed model, the theoretical results were compared with the microstructure of the coatings. It shows that these theoretical results are in excellent agreement with the experiment cases.  相似文献   

19.
Three-dimensional (3D) and two-dimensional (2D) periodic silicon nanostructures formed by polarized focused Nd:YAG laser irradiation (532 nm) with spot size less than 3 μm on Si covered by SiO2 are presented in this paper. We observed that at a low laser intensity I range, from I=0.9 to 1.08 W, 2D periodic coexisting of liquid and solid exists, while for 1.08<I<1.44 W, 3D periodic ripples were formed. However, when the light intensity is out of those ranges, either no melting was created (I<0.9 W) or the periodicity was destroyed (I>1.44 W). The periodicity of these periodic structures is 359 nm related to the wavelength of frequency doubledNd:YAG laser and the index of refraction of SiO2. We propose a model based on the fact that as the oxygen is diffusing locally from SiO2 into the melted Si, thus forming SiOβ with a lower melting point, successive pulses melt preferentially these regions giving rise to a positive feedback. This dynamic nanoscale modeling, based on variations of melting points of Si and dielectric and reflection coefficient, confirms the experimental results. PACS 81.07.–b; 81.10.Fq; 61.80.Ba; 66.10.Cb  相似文献   

20.
Thin films of the half-doped manganite Pr0.5Ca0.5MnO3 were grown on (1 0 0) oriented MgO substrates by pulsed laser deposition technique. In order to study the effect of strain on the magnetic field induced charge order melting, films of different thicknesses were prepared and their properties were studied by X-ray diffraction, electrical resistivity and magnetoresistance measurements. A field induced charge order melting is observed for films with very small thicknesses. The charge order transition temperature and the magnetic field induced charge order melting are observed to depend on the nature of strain that is experienced by the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号