首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 84 毫秒
1.
Kousik Mukherjee 《Optik》2011,122(16):1407-1411
All optical encryption decryption method using frequency encoding is proposed based on semiconductor optical amplifiers. The plain text and key are encoded in frequency encoding format i.e. the states of information ‘0’ and ‘1’ are represented by two different frequencies in the c-band. The ultra fast speed of operation of the devices used for the implementation of this system makes it very attractive for future all optical secure communication network. A simple method of conversion of frequency encoded data stream and intensity encoded data stream is also described, which enables us to use same technology of production and detection of intensity encoded data signals until new techniques based on frequency encoding comes out.  相似文献   

2.
The very fast running optical memory and optical logic gates are the basic building blocks for any optical computing data processing system. Realization of a very fast memory-cell in the optical domain is very challenging. In the last two decades many methods of implementing all-optical flip-flops have been proposed. Most of these suffer from speed limitation because of low switching response of the active devices. In our present communication the authors propose a method of developing a frequency encoded memory unit based on the switching action of semiconductor optical amplifier (SOA). Nonlinear polarization rotation characters of SOA and ‘SOA based Mach-Zehnder Interferometer’ switch, i.e. ‘SOA-MZI’ switch, are exploited for the purpose of some switching action with least switching power (<−3 dBm) and high switching contrast ratio (20 dB). Here two logic states (‘0’ state and ‘1’ state) of the memory is encoded by two different frequencies, which will remain unchanged throughout the data communication irrespective of loss of light energy due to reflection, refraction, attenuation, etc. Though the SOA based switch runs with the operational speed 100 Gb/s, still due to the presence of the other optical components in the memory unit, the overall speed of the proposed system will come down to 10 Gb/s.  相似文献   

3.
Leighton TG 《Ultrasonics》2008,48(2):85-90
The most common nonlinear equation of motion for the damped pulsation of a spherical gas bubble in an infinite body of liquid is the Rayleigh-Plesset equation, expressed in terms of the dependency of the bubble radius on the conditions pertaining in the gas and liquid (the so-called ‘radius frame’). However over the past few decades several important analyses have been based on a heuristically derived small-amplitude expansion of the Rayleigh-Plesset equation which considers the bubble volume, instead of the radius, as the parameter of interest, and for which the dissipation term is not derived from first principles. So common is the use of this equation in some fields that the inherent differences between it and the ‘radius frame’ Rayleigh-Plesset equation are not emphasised, and it is important in comparing the results of the two equations to understand that they differ both in terms of damping, and in the extent to which they neglect higher order terms. This paper highlights these differences. Furthermore, it derives a ‘volume frame’ version of the Rayleigh-Plesset equation which contains exactly the same basic physics for dissipation, and retains terms to the same high order, as does the ‘radius frame’ Rayleigh-Plesset equation. Use of this equation will allow like-with-like comparisons between predictions in the two frames.  相似文献   

4.
This article examines alternate vibration isolation measures for a multi-dimensional system. The isolator and receiver are modelled by the continuous system theory. The source is assumed to be rigid and both force and moment excitations are considered. Our analysis is limited to a linear time-invariant system, and the mobility synthesis method is adopted to describe the overall system behavior. Inverted ‘L’ beam and plate receivers are employed here to incorporate the contribution of their in-plane motions to vibration powers and radiated sound. Multi-dimensional transmissibilities and effectivenesses are comparatively evaluated along with power-based measures for the inverted ‘L’ beam receiver and selected source configurations. Further, sound pressures radiated from the inverted ‘L’ beam receiver are calculated and correlated with power transmitted to the receiver. Interactions within the ‘L’ beam receiver are also analyzed and measures that could identify dominant transfer paths within a system are examined. Sound measurements and predictions for the inverted ‘L’ plate receiver demonstrate that a rank order based on free field sound pressures, at one or more locations, may be regarded as a measure of isolation performance. Measured insertion losses for sound pressure match well with those based on computed results although further study is needed in relation to some discrepancies shown in the results. Finally, several emerging research topics are identified.  相似文献   

5.
The ‘Ziegler paradox’, concerning the destabilizing effect of damping on elastic systems loaded by nonconservative positional forces, is addressed. The paper aims to look at the phenomenon in a new perspective, according to which no surprising discontinuities in the critical load exist between undamped and damped systems. To show that the actual critical load is found as an (infinitesimal) perturbation of one of the infinitely many sub-critically loaded undamped systems. A series expansion of the damped eigenvalues around the distinct purely imaginary undamped eigenvalues is performed, with the load kept as a fixed, although unknown, parameter. The first sensitivity of the eigenvalues, which is found to be real, is zeroed, so that an implicit expression for the critical load multiplier is found, which only depends on the ‘shape’ of damping, being independent of its magnitude. An interpretation is given of the destabilization paradox, by referring to the concept of ‘modal damping’, according to which the sign of the projection of the damping force on the eigenvector of the dual basis, and not on the eigenvector itself, is the true responsible for stability. The whole procedure is explained in detail for discrete systems, and successively extended to continuous systems. Two sample structures are studied for illustrative purposes: the classical reverse double-pendulum under a follower force and a linear visco-elastic beam under a follower force and a dead load.  相似文献   

6.
Dynamics of a model mechanical system with ‘fast and strong’ oscillations of the damping coefficient has been analyzed by Fidlin (2005) [6]. He has performed the asymptotic analysis of the equation of motion of this system to conclude that these oscillations produce variation in its effective stiffness. The present paper continues analysis of dynamics of the system in the regimes of motion treated by Fidlin as well as in those left out in his asymptotic solution. The results are compared with the results of the solution of the classical Mathieu equation, which features fast oscillations in the stiffness of a system. The influence of stiffness and damping modulations on the stability of motion of corresponding oscillators is studied. Several engineering applications modeled by the system with oscillations of the damping coefficient are introduced. Analysis of motion of this system exemplifies how the method of direct separation of motions (Blekhman (2000) [7]) can be applied for solving equations with fast oscillating terms depending on the velocities. Some features of the application of the method of direct separation of motions in this case and in the similar ones are highlighted.  相似文献   

7.
Abhijit Kar Gupta 《Physica A》2012,391(4):1509-1514
This work is primarily based on a recently proposed toy model by Thurner et al. (2010) [3] on Schumpeterian economic dynamics (inspired by the idea of economist Joseph Schumpeter [9]). Interestingly, punctuated equilibrium has been shown to emerge from the dynamics. The punctuated equilibrium and Power law are known to be associated with similar kinds of biologically relevant evolutionary models proposed in the past. The occurrence of the Power law is a signature of Self-Organised Criticality (SOC). In our view, power laws can be obtained by controlling the dynamics through incorporating the idea of feedback into the algorithm in some way. The so-called ‘feedback’ was achieved by introducing the idea of fitness and selection processes in the biological evolutionary models. Therefore, we examine the possible emergence of a power law by invoking the concepts of ‘fitness’ and ‘selection’ in the present model of economic evolution.  相似文献   

8.
We present a theory of non-solar cosmic rays (CRs) in which the bulk of their observed flux is due to a single type of CR source at all energies. The total luminosity of the Galaxy, the broken power-law spectra with their observed slopes, the position of the ‘knee(s)’ and ‘ankle’, and the CR composition and its variation with energy are all predicted in terms of very simple and completely ‘standard’ physics. The source of CRs is extremely ‘economical’: it has only one parameter to be fitted to the ensemble of all of the mentioned data. All other inputs are ‘priors’, that is, theoretical or observational items of information independent of the properties of the source of CRs, and chosen to lie in their pre-established ranges. The theory is part of a ‘unified view of high-energy astrophysics’ — based on the ‘Cannonball’ model of the relativistic ejecta of accreting black holes and neutron stars. The model has been extremely successful in predicting all the novel properties of Gamma Ray Bursts recently observed with the help of the Swift satellite. If correct, this model is only lacking a satisfactory theoretical understanding of the ‘cannon’ that emits the cannonballs in catastrophic processes of accretion.  相似文献   

9.
Correlation of finite element models of multi-physics systems   总被引:1,自引:0,他引:1  
The modal assurance criterion (MAC) and normalized cross-orthogonality (NCO) check are widely used to assess the correlation between the experimentally determined modes and the finite element model (FEM) predictions of mechanical systems. Here, their effectiveness in the correlation of FEM of two types of multi-physics systems, namely, viscoelastic damped systems and a shunted piezoelectric system are investigated using the dynamic characteristics obtained from a nominal FEM, that are considered as the ‘true’ or experimental characteristics and those obtained from the inaccurate FEMs. The usefulness of the MAC and NCO check in the prediction of the overall loss factor of the viscoelastic damped system, which is an important design tool for such systems, is assessed and it is observed that these correlation methods fail to properly predict the damping characteristics, along with the responses under base excitation. Hence, base force assurance criterion (BFAC) is applied by comparing the ‘true’ dynamic force at the base and inaccurate FEM predicted force such that the criterion can indicate the possible error in the acceleration and loss factor. The effect of temperature as an uncertainty on the MAC and NCO check is also studied using two viscoelastic systems. The usefulness of MAC for the correlation of a second multi-physics FEM that consists of a shunted piezoelectric damped system is also analyzed under harmonic excitation. It has been observed that MAC has limited use in the correlation and hence, a new correlation method – current assurance criterion – based on the electric current is introduced and it is demonstrated that this criterion correlates the dynamic characteristics of the piezoelectric system better than the MAC.  相似文献   

10.
The urban road network is a complex system that exhibits the properties of self-organization and emergence. Recent theoretical and empirical studies have mainly focused on the structural properties of the urban road networks. This research concentrates on some important parameters such as degree, average degree, meshedness coefficient, betweeness, etc. These parameters of the real road network exhibit specific statistical properties. Some studies show that perhaps these specific statistical properties are caused by a compromise mechanism of the formation of a minimum spanning tree and the greedy triangulation. Inspired by these results, we propose a principle to construct the network (we call it a MG network in this paper) whose structure is located between the minimum spanning tree and the greedy triangulation at first. The structural properties of the MG network are analyzed. We find the formation mechanism of the MG network cannot explain the urban road network evolution well. Then, based on the formation mechanism of the MG network, we add the ‘direction preferred connection’ and ‘degree constraint’ principles to the urban road network evolution simulation process. The result of the simulation network turns out to be a planar network that is in accordance with reality. Compared with the real road network’s structural properties, we find the simulation results are so consistent with it. It indicates the validation of the model and also demonstrates perhaps the ‘direction preferred connection’ and ‘degree constraint’ principle can explain the urban road network evolution better.  相似文献   

11.
This paper presents a novel approach to the reduction of short-span bridge dynamic responses to heavy vehicle crossing events. The reductions are achieved through adjustment of the vehicle suspension damping coefficient just before the crossing. Given pre-calculations of the response of a vehicle-bridge system to a set of ‘unit’ road disturbances, it is shown that a single optimum damping coefficient may be determined for a given velocity and any specified road profile. This approach can facilitate implementation since the optimum damping is selected prior to the bridge and there is no need to continuously vary the damping coefficient during the crossing. The concept is numerically validated using a bridge-vehicle interaction model with several road profiles, both measured and artificially generated. The bridge-friendly damping control strategy is shown to reduce bridge dynamics across a typical range of vehicle velocities, proving most effective for road profiles that induce large vibrations in the vehicle-bridge system.  相似文献   

12.
Md. Mijanur Rahman 《Optik》2011,122(1):84-88
A novel approach for transferring logic states from one quantum node to other is proposed. Logic states ‘0’ and ‘1’ are represented by two subspaces of the hyperfine states space of rubidium atom (87Rb). The atom, placed at the center of a two-mode cavity, is excited by simultaneous application of two laser beams, one for each subspace. Based on the logic state of the atom, it makes a transition to a higher energy level within the corresponding subspace. When the atom relaxes back to a lower state within the subspace, a left- or right-circularly polarized photon is emitted depending on whether the initial state was logic ‘0’ or logic ‘1’. The polarized photon leaks out of the cavity, reaches the receive node and gets detected therein. Simulation results show the efficacy of the approach.  相似文献   

13.
Using the original and ‘symmetrical face’ training samples to perform representation based face recognition was first proposed in [1]. It simultaneously used the original and ‘symmetrical face’ training samples to perform a two-step classification and achieved an outstanding classification result. However, in [1] the “symmetrical face” is devised only for one method. In this paper, we do some improvements on the basis of [1] and combine this “symmetrical faces” transformation with several representation based methods. We exploit all original training samples, left “symmetrical face” training samples and right “symmetrical face” training samples for classification and use the score fusion for ultimate face recognition. The symmetry of the face is first used to generate new samples, which is different from original face image but can really reflect some possible appearance of the face. It effectively overcomes the problem of non-sufficient training samples. The experimental results show that the proposed scheme can be used to improve a number of traditional representation based methods including those that are not presented in the paper.  相似文献   

14.
A three-dimensional model based on Monte-Carlo and Finite Elements techniques has been used for simulating plume behavior, ‘micron-sized particles’ movement and interaction with obstacles in a Pulsed Laser Deposition with Plasma Reflection (PLD/PR) system. Have been investigated the influences of mass, surface size and emission time on trajectory and film surface quality as well. Droplet and ‘big-size particles’ deposition statistics are presented and a comparison between theoretical and experimental results upon thin film surface quality as well. One can observe that particles mass and surface size have a strong influence on the particles trajectory by affecting the collisions parameters during the entire propagation process. The emission time should influence the particles trajectory by affecting the probability of interaction with other particles. By making a 10,000 particles statistic for a normal distribution of these investigated parameters, we obtain reasonable good results in modeling ‘big-size particles’ tendency to be deposited at lower reflection angles. These results sustain assumption of ‘big particles’ deflection by plume fine particles during the propagation process.  相似文献   

15.
We discuss the Lagrangian transport in a time-dependent oceanic system involving a Lagrangian barrier associated with a salinity front which interacts intermittently with a set of Lagrangian eddies — ‘leaky’ coherent structures that entrain and detrain fluid as they move. A theoretical framework, rooted in the dynamical systems theory, is developed in order to describe and analyse this situation. We show that such an analysis can be successfully applied to a realistic ocean model. Here, we use the output of the numerical ocean model DieCAST from Dietrich et al. (2004) [17] and Fernández et al. (2005) [18] studied earlier in Mancho et al. (2008) [15] where a Lagrangian barrier associated with the North Balearic Front in the North-Western Mediterranean Sea was identified. The numerical model provides an Eulerian view of the flow and we employ the dynamical systems approach to identify relevant hyperbolic trajectories and their stable and unstable manifolds. These manifolds are used to understand the Lagrangian geometry of the evolving front-eddy system. Transport in this system is effected by the turnstile mechanism whose spatio-temporal geometry reveals intermittent pathways along which transport occurs. Particular attention is paid to the ‘Lagrangian’ interactions between the front and the eddies, and to transport implications associated with the transition between the one-eddy and two-eddy situation. The analysis of this ‘Lagrangian’ transition is aided by a local kinematic model that provides insight into the nature of the change in hyperbolic trajectories and their stable and unstable manifolds associated with the ‘birth’ and ‘death’ of leaky Lagrangian eddies.  相似文献   

16.
The evolution of cooperation is studied in lattice-structured populations, in which each individual who adopts one of the following strategies ‘always defect’ (ALLD), ‘tit-for-tat’ (TFT), and ‘always cooperate’ (ALLC) plays the repeated Prisoner’s Dilemma game with its neighbors according to an asynchronous update rule. Computer simulations are applied to analyse the dynamics depending on major parameters. Mathematical analyses based on invasion probability analysis, mean-field approximation, as well as pair approximation are also used. We find that the lattice structure promotes the evolution of cooperation compared with a non-spatial population, this is also confirmed by invasion probability analysis in one dimension. Meanwhile, it also inhibits the evolution of cooperation due to the advantage of being spiteful, which indicates the key role of specific life-history assumptions. Mean-field approximation fails to predict the outcome of computer simulations. Pair approximation is accurate in two dimensions but fails in one dimension.  相似文献   

17.
A cavity quantum electrodynamics (QED) based approach for transferring quantum state between quantum nodes has been proposed, wherein a rubidium (87Rb) atom trapped inside a two-mode optical cavity forms the quantum node and photons serve as the information carrier between two such nodes. Information is encoded into polarized photon states generated through the application of a system of lasers. The focus is made on the phase-space analysis of the approach, wherein two subspaces of the hyperfine energy levels with magnetic sub-levels of rubidium (87Rb) atom represent the logic states ‘0’ and ‘1’. The system of lasers initiates a cavity assisted Raman process which, in turn, generates a right- or left-circularly polarized photon depending on the logic state of the transmit node. Once the photon is received (at the receive node), the logic state of the transmit node is restored into the receive node through a cavity QED process.  相似文献   

18.
Andrea Ellero  Giovanni Fasano 《Physica A》2009,388(18):3901-3910
In this paper we analyze the stochastic model proposed by Galam in [S. Galam, Modelling rumors: The no plane Pentagon French hoax case, Physica A 320 (2003), 571-580], for information spreading in a ‘word-of-mouth’ process among agents, based on a majority rule. Using the communications rules among agents defined in the above reference, we first perform simulations of the ‘word-of-mouth’ process and compare the results with the theoretical values predicted by Galam’s model. Some dissimilarities arise in particular when a small number of agents is considered. We find motivations for these dissimilarities and suggest some enhancements by introducing a new parameter dependent model. We propose a modified Galam’s scheme which is asymptotically coincident with the original model in the above reference. Furthermore, for relatively small values of the parameter, we provide a numerical experience proving that the modified model often outperforms the original one.  相似文献   

19.
A methodology was developed to analyze relation-based systems evolving in time by using the fundamental concepts of thermodynamics. The behavior of such systems can be tracked from the scattering matrix which is actually a network of directed vectors (or pathways) connecting subsequent values, which characterize an event, such as the index values in stock markets. A system behaves in a rigid (elastic) way to an external effect and resists permanent deformation, or it behaves in a viscous (or soft) way and deforms in an irreversible way. It was shown in the past that a formula derived using the slope of paths gives a measure about the extent of viscoelastic behavior of relation-based systems Gündüz (2009) [5] Gündüz and Gündüz (2010) [6]. In this research the ‘work’ associated with ‘elastic’ component, and ‘heat’ associated with ‘viscous’ component were discussed and elaborated. In a simple two subsequent pathway system in a scattering diagram the first vector represents ‘the cause’ and the second ‘the effect’. By using work and heat energy relations that involve force and also storage and loss modulus terms, respectively, one can calculate the energy involved in relation-based systems. The modulus values can be found from the parallel and vertical components of the second vector with respect to the first vector. Once work-like and heat-like terms were determined the internal energy is also easily found from their summation. The parallel and vertical components can also be used to calculate the magnitude of torque and torque energy in the system. Three cases, (i) the behavior of the NASDAQ-100 index, (ii) a social revolt, and (iii) the structure of a melody were analyzed for their ‘work-like’, ‘heat-like’, and ‘torque-like’ energies in the course of their evolution. NASDAQ-100 exhibits highly dissipative behavior, and its work terms are very small but heat terms are of large magnitude. Its internal energy highly fluctuates in time. In the social revolt studied work and heat terms are of comparable magnitude. The melody depicts highly organized structure, and usually has larger work terms than heat terms, but at some intervals heat terms burst out and attain very large magnitudes. Torque terms reach high values when the system is recovering from a minimum value.  相似文献   

20.
The absorption of sound by cavities lined with perforated sheets depends crucially on the impedance of the orifices in the sheets. Although the theory for that absorption in the absence of a mean flow was well-developed in 1926, the presence of either a ‘bias’ flow through the orifices, or of a flow ‘grazing’ the sheet and deflecting the acoustic jets, radically alters the absorption. There are many theoretical and experimental treatments of the various cases, some of which are reviewed here. However, there has been little attempt to show how these data relate to one another, and this is also undertaken. The frequency dependence of the impedance is here expressed in terms of a Helmholtz number and used as the prime parameter for comparison. Theories for the cases where the mean flow is negligible are naturally based on the viscous penetration depth, whereas those for bias flow have a Strouhal number as the main parameter and are independent of viscosity. It is found that there are major uncertainties in the impedance for higher Strouhal numbers, when the bias flow is small. A criterion for transition to the no-bias flow theory is proposed. Theories and correlations for grazing flow rationally feature a Strouhal number based on the friction velocity in the duct, since this determines the boundary layer characteristics, but there should be a smooth transition to the case where the grazing flow can be considered negligible. Criteria for this are also proposed, based on the available experimental data. When both types of flow are present, particularly when the grazing velocity is larger than the bias velocity, the available data are very limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号