首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coupled lateral-torsional dynamics of parallel rotor-bearing systems has been intensively investigated. However, little attention has been paid to the analysis of coupled vibrations of angled rotor-bearing systems so that the torsional and the lateral vibrations of those systems are usually analyzed separately. In this paper, the coupled axial-lateral-torsional dynamics of a rotor-bearing system geared by bevel gears is studied. The meshing of two spur bevel gears is analyzed on the basis of a pair of virtual cylindrical gears, and thereafter the constraint condition describing the relationship between the generalized displacements of bevel gears is derived under some assumptions. The coupled dynamic model is established by using Lagrange's equation under this constraint condition. The numerical results of a number of case studies show that the critical speeds of the coupled model are different from those of the uncoupled model both in values and modes, and the threshold speed of stability is fairly less than that of the uncoupled model. The effects of system parameters, such as the pitch cone angles, on the coupling behavior are also discussed.  相似文献   

2.
In this paper, a finite element formulation, used to analyze the contact-impact behavior of geared rotor systems coupled with the rotational, lateral, and axial vibrations between gears at high rotational speeds, has been developed. A gear impact element to model the contact-impact behavior between gears has been developed and its numerical method is discussed. A relative displacement measurement idea has been proposed to measure vibration parameter for contrast experiment in high rotational geared system. The equations of motion are derived and solved iteratively during each time increment until the unbalanced force decrease to an acceptable tolerance level. Based on the proposed method, an analysis program, GEARS, has been developed. The contact-impact behavior of geared rotor systems is analyzed especially under high rotational speed condition as numerical examples, which are demonstrated to show the effectiveness of the proposed method.  相似文献   

3.
Linear models and synchronous response are generally adequate to describe and analyze rotors supported by hydrodynamic bearings. Hence, stiffness and damping coefficients can provide a good model for a wide range of situations. However, in some cases, this approach does not suffice to describe the dynamic behavior of the rotor-bearing system. Moreover, unstable motion occurs due to precessional orbits in the rotor-bearing system. This instability is called “oil whirl” or “oil whip”. The oil whirl phenomenon occurs when the journal bearings are lightly loaded and the shaft is whirling at a frequency close to one-half of rotor angular speed. When the angular speed of the rotor reaches approximately twice the natural frequency (first critical speed), the oil whip phenomenon occurs and remains even if the rotor angular speed increases. Its frequency and vibration mode correspond to the first critical speed. The main purpose of this paper is to validate a complete nonlinear solution to simulate the fluid-induced instability during run-up and run-down. A flexible rotor with a central disk under unbalanced excitation is modeled. A nonlinear hydrodynamic model is considered for short bearing and laminar flow. The effects of unbalance, journal-bearing parameters and rotor arrangement (vertical or horizontal) on the instability threshold are verified. The model simulations are compared with measurements at a real vertical power plant and a horizontal test rig.  相似文献   

4.
External and internal bending–torsion coupling effects of a rotor system with comprehensive unbalances are studied by analytical analysis and numerical simulations. Based on Lagrangian approach, a full-degree-of-freedom dynamic model of a Jeffcott rotor is developed. The harmonic balance method and the Floquet theory are combined to analyze the stability of the system equations. Numerical simulations are conducted to observe the bending–torsion coupling effects. In the formulation of rotordynamic model, two bending–torsion coupling patterns, external coupling and internal coupling, are suggested. By analytical analysis, it is concluded that the periodic solution of the system is asymptotically stable. From numerical simulations, three bending–torsion coupling effects are observed in three cases. Under static unbalance, synchronous torsional response is observed, which is the result of external coupling under unbalanced force. Under dynamic unbalance, two-time synchronous frequency torsional response is observed, which is the result of internal coupling under unbalanced moment. Under comprehensive unbalance, synchronous and two-time synchronous frequency torsional components are observed, which are the results of both external and internal couplings under unbalanced force and moment. These observations agree with the analytical analysis. It is believed that these observed phenomena should make sense in the dynamical design and fault diagnostics of a rotor system.  相似文献   

5.
Linear parameter varying (LPV) control is a model-based control technique that takes into account time-varying parameters of the plant. In the case of rotating systems supported by lubricated bearings, the dynamic characteristics of the bearings change in time as a function of the rotating speed. Hence, LPV control can tackle the problem of run-up and run-down operational conditions when dynamic characteristics of the rotating system change significantly in time due to the bearings and high vibration levels occur. In this work, the LPV control design for a flexible shaft supported by plain journal bearings is presented. The model used in the LPV control design is updated from unbalance response experimental results and dynamic coefficients for the entire range of rotating speeds are obtained by numerical optimization. Experimental implementation of the designed LPV control resulted in strong reduction of vibration amplitudes when crossing the critical speed, without affecting system behavior in sub- or super-critical speeds.  相似文献   

6.
The present work is aimed at verifying the influence of high asymmetries in the variation of in-plane lead-lag stiffness of one blade on the ground resonance phenomenon in helicopters. The periodical equations of motions are analyzed by using Floquet's Theory (FM) and the boundaries of instabilities predicted. The stability chart obtained as a function of asymmetry parameters and rotor speed reveals a complex evolution of critical zones and the existence of bifurcation points at low rotor speed values. Additionally, it is known that when treated as parametric excitations; periodic terms may cause parametric resonances in dynamic systems, some of which can become unstable. Therefore, the helicopter is later considered as a parametrically excited system and the equations are treated analytically by applying the Method of Multiple Scales (MMS). A stability analysis is used to verify the existence of unstable parametric resonances with first and second-order sets of equations. The results are compared and validated with those obtained by Floquet's Theory. Moreover, an explanation is given for the presence of unstable motion at low rotor speeds due to parametric instabilities of the second order.  相似文献   

7.
In this study, the dynamic behaviors of a BLDC motor are analyzed, when the motor undergoes mechanical and electromagnetic interaction due to an air gap variation between the stator and rotor. When considering the air gap variation caused by the translational motion of the rotor relative to the stator, the kinetic and potential energies, Rayleigh dissipation function, and the magnetic coenergy are expressed in terms of the rotor displacements and stator currents. With these energies and function, new equations of motion are derived using Lagrange’s equation. The equations for the proposed model are nonlinear equations in which the displacements and currents are coupled. The time responses for the displacements and currents are computed for the proposed and previous models. Furthermore, the effects of rotor eccentricity are also investigated. It is found that, when the air gap varies with time, the time responses for the proposed and previous models have small differences in the stator currents, electromagnetic torques, and rotating speeds. However, the time responses have large differences in the rotor displacements. Therefore, this paper claims that the proposed model describes the dynamic behaviors of the motor more accurately than the previous model. It is also shown that rotor eccentricity increases the stator current period and the electromagnetic torque, while it decreases the rotating speed of the rotor.  相似文献   

8.
Vibration response of misaligned rotors   总被引:3,自引:0,他引:3  
Misalignment is one of the common faults observed in rotors. Effect of misalignment on vibration response of coupled rotors is investigated in the present study. The coupled rotor system is modelled using Timoshenko beam elements with all six dof. An experimental approach is proposed for the first time for determination of magnitude and harmonic nature of the misalignment excitation. Misalignment effect at coupling location of rotor FE model is simulated using nodal force vector. The force vector is found using misalignment coupling stiffness matrix, derived from experimental data and applied misalignment between the two rotors. Steady-state vibration response is studied for sub-critical speeds. Effect of the types of misalignment (parallel and angular) on the vibration behaviour of the coupled rotor is examined. Along with lateral vibrations, axial and torsional vibrations are also investigated and nature of the vibration response is also examined. It has been found that the misalignment couples vibrations in bending, longitudinal and torsional modes. Some diagnostic features in the fast Fourier transform (FFT) of torsional and longitudinal response related to parallel and angular misalignment have been revealed. Full spectra and orbit plots are effectively used to reveal the unique nature of misalignment fault leading to reliable misalignment diagnostic information, not clearly brought out by earlier studies.  相似文献   

9.
In this paper, vibration of a bladed unbalanced flexible rotor is studied. The blade that is attached to the disk is considered as a fixed-free Euler-Bernoulli beam. Position of the blade with respect to the eccentric mass is taken into consideration. Coupled equations of the motion of unbalanced rotor and the blades are obtained through Lagrange equations. The dynamic equations have time variant periodic coefficients. Transient vibration analysis showed that rotor acceleration excites the blade vibration with its own natural frequency. While the rotor passes through its own natural frequency (critical speed) the blade vibration is again excited but this time with the rotor natural frequency. Modal behavior of the blades are different for subcritical, supercritical and for critical speed of the rotor. In the subcritical run of the rotor, blades located from 0° to 180° with respect to the eccentric mass are deflected in the negative direction while the rest are deflected in the positive direction. For supercritical run of the rotor, modal behavior of the blades is just the opposite. For critical speed of the rotor, blades located 90° to 270° from the eccentric mass are deflected in the positive direction while the rest of the blades are deflected in the negative direction. Blades have also different deflections. When the deflections of the blades are plotted with respect to their position angle, distribution of the blade deflections has a sinusoidal shape.  相似文献   

10.
A general analysis has been developed to computer simulate steady state and transient vibration phenomena of complex rotor-bearing-support systems. A central feature of this analysis is a proper handling of various highly non-linear effects (most notably journal bearings) which dominate the dynamic phenoména encountered during large amplitude rotor-bearing vibrations. There are a number of potential causes of large amplitude rotor vibration, such as high rotor imbalance (e.g., loss of turbine blades at running speed), critical speed operation, journal bearing dynamic instability (oil whip), earthquakes, and shock. Failure mode analysis requires the evaluation and understanding of such potentially large dynamic forces and displacements. The paper presents development of the analysis, comparison with experiment and examples of its use in industrial applications.  相似文献   

11.
Few studies have been made of the stability of a dynamic system moving on an infinite continuum. Here a general method of analysis of such coupled systems is presented. It shows that vehicles possessing a single point of contact with the foundation become unstable above a velocity always higher than the critical speed defined in the classical constant moving force problem. Flutter speeds lower than this critical speed have been obtained in the case of vehicles with two points of contact. This destabilizing effect is due to the damping of the foundation. The evolution of the flutter boundaries as a function of the characteristics of the foundation is described for a typical vehicle.  相似文献   

12.
This paper examines the non-linear dynamic behaviour of a flexible shaft. The shaft is mounted on two journal bearings and the axial load is supported by a defective hydrodynamic thrust bearing at one end. The defect is a levelness defect of the rotor. The thrust bearing behaviour must be considered to be non-linear because of the effects of the defect. The shaft is modelled with typical beam finite elements including effects such as the gyroscopic effects. A modal technique is used to reduce the number of degrees of freedom. Results show that the thrust bearing defects introduce supplementary critical speeds. The linear approach is unable to show the supplementary critical speeds which are obtained only by using non-linear analysis.  相似文献   

13.
This paper considers the bifurcation and nonlinear behavior of a flexible rotor supported by a relative short herringbone-grooved gas journal bearing system. A numerical method is employed to a time-dependent mathematical model. A finite difference method with successive over relation method is employed to solve the Reynolds’ equation. The system state trajectory, Poincaré maps, power spectra, and bifurcation diagrams are used to analyze the dynamic behavior of the rotor and journal centers in the horizontal and vertical directions under different operating conditions. The analysis reveals a complex dynamic behavior comprising periodic and quasi-periodic response of the rotor and journal centers. It further shown the dynamic behavior of this type of system varies with changes in bearing number and rotor mass. The results of this study contribute to a better understanding of the nonlinear dynamics of herringbone-grooved gas journal bearing systems.  相似文献   

14.
A comparison of theoretical and experimental synchronous unbalance responses of a bowed Jeffcott rotor in fluid film bearings has been completed. A transfer matrix method was used to predict theoretically the response of a 25·4 mm shaft in fluid film bearings and results were compared to data from a previous experimental study. Four bearing types were used: two axial groove, pressure dam, tilting pad and four-lobe. Very good agreement was found for all bearing types at the rotor critical speed (3000 rpm). Differences less than 15% in peak response were found and the theoretical and experimental peaks were found to occur within 200 rpm. Worst agreement was found for the preloaded four-lobe bearings and this disagreement was found for speeds other than the critical speed. Also, for equal bow and unbalance the tilting pad and four-lobe bearings were found to produce the least and most damping at the critical speed, respectively. Previous to this time a comparison of theoretical and experimental synchronous responses of a rotor system representing industrial turbomachines has not been published, nor has a comparative study of the different bearing types.  相似文献   

15.
A theoretical technique for predicting the flutter characteristics of a helicopter rotor is presented. The effect of phase angle on flutter speed of a two-bladed rotor in hovering and axial flight is determined. For this purpose, a uniform and untwisted rotor blade with coupled flapwise bending and torsional degrees of freedom is considered. The transmission matrix method is used to obtain the natural vibration characteristics of the system. An unsteady aerodynamic theory is used to obtain the aerodynamic loading in compressible flow.  相似文献   

16.
Dynamic stability and time responses are studied for an automatic ball balancer of a rotor with a flexible shaft. The Stodola-Green rotor model, of which the shaft is flexible, is selected for analysis. This rotor model is able to include the influence of rigid-body rotations due to the shaft flexibility on dynamic responses. Applying Lagrange's equation to the rotor with the ball balancer, the non-linear equations of motion are derived. Based on the linearized equations, the stability of the ball balancer around the balanced equilibrium position is analyzed. On the other hand, the time responses computed from the non-linear equations are investigated. This study shows that the automatic ball balancer can achieve the balancing of a rotor with a flexible shaft if the system parameters of the balancer satisfy the stability conditions for the balanced equilibrium position.  相似文献   

17.
The bending vibrational behaviour of a flexible rotor with a continuous mass distribution passing its critical speeds under a driving torque is considered. It is shown that the (non-linear) equations of motion for an actual shaft can be formally traced back to those of a Laval rotor. In this way, the results for a Laval rotor, which, in an earlier publication by the authors [1], have been presented generally for constant load torque can be applied to actual rotors. The system parameters of the Laval rotor merely have to be replaced by the generalized parameters of the respective bending modes. A special study shows that the effect of the torsional flexibility of the shaft on the bending vibrational behaviour is negligible.  相似文献   

18.
In large scale rotating machinery the resonance amplitude during the passage through resonance is a matter of consideration because of its influence in the surrounding environment of the rotational system and foundation. In this paper, a variable geometry journal bearing (VGJB), recently patented, is applied for the mounting of a large scale rotor bearing system operating at the range of medium speed. The simulation of the rotor-bearing system incorporates a recent method for simulation of a multi-segment continuous rotor in combination with nonlinear bearing forces. The use of the current bearing gives results that encourage the use of such a bearing in rotating machinery since the vibration amplitude during the passage through the critical speed can be reduced up to 60–70%. In the presented study, the developed amplitude and the rotor stresses are severely reduced compared to those of the system with normal cylindrical journal bearings during a virtual start up of the system.  相似文献   

19.
This study develops a computational model of the dynamic characteristics of the actively controlled, magnetically levitated (maglev) system moving on a flexible guideway. The 5-dof (degree-of-freedom) vehicle model, the modeling of the EMS (electromagnetic suspension), guideway, and guideway irregularity are described, respectively. In this sense, the dynamic response of a coupled vehicle and guideway system is investigated with different vehicle speeds and masses. Furthermore, the formulation of SMC (sliding mode control) based on the Kalman filter is addressed for the control of the dynamic response of the maglev system for various prescribed running speeds. For numerical simulation, the Runge-Kutta method is used to solve the state-space equation, which includes information about the vehicle, guideway and controller. The results reveal that both the air gap fluctuation and the cabin CG (center of gravity) vertical acceleration are strongly affected by the vehicle speed and guideway irregularity, but only slightly affected by the vehicle mass. Moreover, SMC based on the Kalman filter considerably reduces the air gap fluctuation and cabin CG vertical acceleration responses, and the efficiency of the adopted control methodology is demonstrated even at higher critical speed conditions.  相似文献   

20.
The goal of this study was to examine the coupled vibration characteristics of a turbo-chiller rotor-bearing system having a bull-pinion speed increasing gear, using a coupled lateral and torsional vibration finite element model of a gear pair, and to provide the mechanism of the characteristic changes. The investigations were systematically carried out by comparing the uncoupled and coupled natural frequencies and their mode shapes with varying gear mesh stiffness, taking into account rotating speeds, and by comparing the strain energies of the lateral and torsional vibration modes. The results show that some modes may yield coupled lateral and torsional mode characteristics when the gear mesh stiffness increases over a certain value and, in addition, that their associated dominant modes may be different from their initial modes, i.e., a given dominant mode may change from an initial torsional one to a lateral one or vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号