首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 56 毫秒
1.
    
We present a new closure model for single fluid, multi‐material Lagrangian hydrodynamics and its application to high‐order finite element discretizations of these equations 1 . The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high‐order variational generalization of the method of Tipton 2 . This computation is defined by the notion of partial non‐instantaneous pressure equilibration, while the full pressure equilibration is achieved by both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one‐dimensional two‐material problems, followed by two‐dimensional and three‐dimensional multi‐material high‐velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

2.
This paper presents a comparison in terms of accuracy and efficiency between two fully nonlinear potential flow solvers for the solution of gravity wave propagation. One model is based on the high‐order spectral (HOS) method, whereas the second model is the high‐order finite difference model OceanWave3D. Although both models solve the nonlinear potential flow problem, they make use of two different approaches. The HOS model uses a modal expansion in the vertical direction to collapse the numerical solution to the two‐dimensional horizontal plane. On the other hand, the finite difference model simply directly solves the three‐dimensional problem. Both models have been well validated on standard test cases and shown to exhibit attractive convergence properties and an optimal scaling of the computational effort with increasing problem size. These two models are compared for solution of a typical problem: propagation of highly nonlinear periodic waves on a finite constant‐depth domain. The HOS model is found to be more efficient than OceanWave3D with a difference dependent on the level of accuracy needed as well as the wave steepness. Also, the higher the order of the finite difference schemes used in OceanWave3D, the closer the results come to the HOS model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The nonlocal theory of the radiative energy transport in laser‐heated plasmas of arbitrary ratio of the characteristic inhomogeneity scale length to the photon mean free paths is applied to define the closure relations of a hydrodynamic system. The corresponding transport phenomena cannot be described accurately using the Chapman–Enskog approach, that is, with the usual fluid approach dealing only with local values and derivatives. Thus, we directly solve the photon transport equation allowing one to take into account the effect of long‐range photon transport. The proposed approach is based on the Bhatnagar–Gross–Krook collision operator using the photon mean free path as a unique parameter. Such an approach delivers a calculation efficiency and an inherent coupling of radiation to the fluid plasma parameters in an implicit way and directly incorporates nonequilibrium physics present under the condition of intense laser energy deposition due to inverse bremsstrahlung. In combination with a higher order discontinuous Galerkin scheme of the transport equation, the solution obeys both limiting cases, that is, the local diffusion asymptotic usually present in radiation hydrodynamics models and the collisionless transport asymptotic of free‐streaming photons. In other words, we can analyze the radiation transport closure for radiation hydrodynamics and how it behaves when deviating from the conditions of validity of Chapman–Enskog method, which is demonstrated in the case of exact steady transport and approximate multigroup diffusion numerical tests. As an application, we present simulation results of intense laser‐target interaction, where the radiative energy transport is controlled by the mean free path of photons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
    
This paper presents a study of the consistency properties of the pressure‐gradient approximation used in multi‐dimensional finite‐element shock hydrodynamics codes today. In specific, consideration is given to the so‐called ‘bent‐element blues’ problem associated with the pressure‐gradient approximation when using the Q1Q0 element. On arbitrary grids comprised of distorted elements, the piecewise‐constant representation of the pressure field leads to a low‐order pressure‐gradient approximation at the global (nodal) level. This results in spurious nodal forces that are not aligned with the pressure gradient. There are several side‐effects of this behavior that include (a) incorrectly exciting physical modes in problems that exhibit unstable behavior, e.g. Rayleigh–Taylor problems (both magnetic and hydrodynamic), (b) potentially seeding hourglass modes, and (c) exhibiting non‐stationary behavior for steady‐state problems. A series of commonly used pressure‐gradient approximations are reviewed and evaluated based on linear consistency—the ability of the approximation to annihilate constant terms and exactly reproduce a linear gradient. The deeper theoretical issues associated with the proper selection of function spaces for the finite‐element hydro formulation are not discussed here. There are two gradient approximations that use piecewise‐constant data and deliver a consistent pressure‐gradient approximation on arbitrary grids. The first is the well‐known least‐squares gradient construction, and the second is a corrected gradient approximation that imposes linear consistency at the (global) nodal level. At the time of this writing, the corrected gradient approximation appears to be the most viable candidate for resolving the consistency issues associated with the Q1Q0 element technology. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
    
A new approach is proposed for constructing a fully explicit third‐order mass‐conservative semi‐Lagrangian scheme for simulating the shallow‐water equations on an equiangular cubed‐sphere grid. State variables are staggered with velocity components stored pointwise at nodal points and mass variables stored as element averages. In order to advance the state variables in time, we first apply an explicit multi‐step time‐stepping scheme to update the velocity components and then use a semi‐Lagrangian advection scheme to update the height field and tracer variables. This procedure is chosen to ensure consistency between dry air mass and tracers, which is particularly important in many atmospheric chemistry applications. The resulting scheme is shown to be competitive with many existing numerical methods on a suite of standard test cases and demonstrates slightly improved performance over other high‐order finite‐volume models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
    
In several settings, diffusive behavior is observed to not follow the rate of spread predicted by parabolic partial differential equations (PDEs) such as the heat equation. Such behaviors, often referred to as anomalous diffusion, can be modeled using nonlocal equations for which points at a finite distance apart can interact. An example of such models is provided by fractional derivative equations. Because of the nonlocal interactions, discretized nonlocal systems have less sparsity, often significantly less, compared with corresponding discretized PDE systems. As such, the need for reduced‐order surrogates that can be used to cheaply determine approximate solutions is much more acute for nonlocal models compared with that for PDEs. In this paper, we consider the construction, application, and testing of proper orthogonal decomposition (POD) reduced models for an integral equation model for nonlocal diffusion. For certain modeling parameters, the model we consider allows for discontinuous solutions and includes fractional Laplacian kernels as a special case. Preliminary computational results illustrate the potential of using POD to obtain accurate approximations of solutions of nonlocal diffusion equations at much lower costs compared with, for example, standard finite element methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
ALE迎风有限元法研究进展   总被引:4,自引:1,他引:3  
综述了ALE描述方法及ALE描述下的运动学关系, 介绍了流体力学中运动边界的ALE追踪方法; 对在解决带自由液面复杂流动问题中与ALE技术密切相关的网格生成和自动更新技术给出了简要概述并讨论了3种不同的网格生成与自动更新方法, 讨论了用经典的有限元方法模拟带自由液面液体流动问题时非物理振荡产生的原因并分析了两种消除非物理振荡的途径, 重点讨论了迎风格式并详述了迎风有限元的发展, 评述了几种将ALE描述和迎风格式相结合的ALE迎风有限元法的最新进展, 并展望了该领域进一步研究的方向.   相似文献   

8.
    
An improved high‐order accurate WENO finite volume method based on unstructured grids for compressible multi‐fluids flow is proposed in this paper. The third‐order accuracy WENO finite volume method based on triangle cell is used to discretize the governing equations. To have higher order of accuracy, the P1 polynomial is reconstructed firstly. After that, the P2 polynomial is reconstructed from the combination of the P1. The reconstructed coefficients are calculated by analytical form of inverse matrix rather than the numerical inversion. This greatly improved the efficiency and the robustness. Four examples are presented to examine this algorithm. Numerical results show that there is no spurious oscillation of velocity and pressure across the interface and high‐order accurate result can be achieved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
    
Flow computations frequently require unfavourably meshes, as for example highly stretched elements in regions of boundary layers or distorted elements in deforming arbitrary Lagrangian Eulerian meshes. Thus, the performance of a flow solver on such meshes is of great interest. The behaviour of finite elements with residual‐based stabilization for incompressible Newtonian flow on distorted meshes is considered here. We investigate the influence of the stabilization terms on the results obtained on distorted meshes by a number of numerical studies. The effect of different element length definitions within the elemental stabilization parameter is considered. Further, different variants of residual‐based stabilization are compared indicating that dropping the second derivatives from the stabilization operator, i.e. using a streamline upwind Petrov–Galerkin type of formulation yields better results in a variety of cases. A comparison of the performance of linear and quadratic elements reveals further that the inconsistency of linear elements equipped with residual‐based stabilization introduces significant errors on distorted meshes, while quadratic elements are almost unaffected by moderate mesh distortion. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
    
In this short note we describe a simple extension to the multi‐material shock‐capturing algorithm presented in (J. Comput. Phys. 2007; 223 :262–297) that can be used to maintain sharp material interfaces. The method takes the form of an artificial compression which is designed so that the material indicator jumps across only a few cells but which does not excite physical instabilities in the flow. The advantages of the approach include its simplicity and flexibility in that it provides a parameter that effectively determines the captured interface thickness. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号