首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this paper, we consider an augmented velocity–pressure–stress formulation of the 2D Stokes problem, in which the stress is defined in terms of the vorticity and the pressure, and then we introduce and analyze stable mixed finite element methods to solve the associated Galerkin scheme. In this way, we further extend similar procedures applied recently to linear elasticity and to other mixed formulations for incompressible fluid flows. Indeed, our approach is based on the introduction of the Galerkin least‐squares‐type terms arising from the corresponding constitutive and equilibrium equations, and from the Dirichlet boundary condition for the velocity, all of them multiplied by stabilization parameters. Then, we show that these parameters can be suitably chosen so that the resulting operator equation induces a strongly coercive bilinear form, whence the associated Galerkin scheme becomes well posed for any choice of finite element subspaces. In particular, we can use continuous piecewise linear velocities, piecewise constant pressures, and rotated Raviart–Thomas elements for the stresses. Next, we derive reliable and efficient residual‐based a posteriori error estimators for the augmented mixed finite element schemes. In addition, several numerical experiments illustrating the performance of the augmented mixed finite element methods, confirming the properties of the a posteriori estimators, and showing the behavior of the associated adaptive algorithms are reported. The present work should be considered as a first step aiming finally to derive augmented mixed finite element methods for vorticity‐based formulations of the 3D Stokes problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
On the basis of two local Gauss integrations, a stabilized finite element method for transient Navier–Stokes equations is presented, which is defined by the lowest equal‐order conforming finite element subspace such as (or ) elements. The best algorithmic feature of our method is using two local Gauss integrations to replace projection operator. The diffusion term in these equations is discretized by using finite element method, and the temporal differentiation and advection terms are treated by characteristic schemes. Moreover, we present some numerical simulations to demonstrate the effectiveness, good stability, and accuracy properties of our method. Especially, the rate of convergence study tells us that the stability still keeps well when the Reynolds number is increasing. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Hessian‐based model reduction was previously proposed as an approach in deriving reduced models for the solution of large‐scale linear inverse problems by targeting accuracy in observation outputs. A control‐theoretic view of Hessian‐based model reduction that hinges on the equality between the Hessian and the transient observability gramian of the underlying linear system is presented. The model reduction strategy is applied to a large‐scale ( degrees of freedom) three‐dimensional contaminant transport problem in an urban environment, an application that requires real‐time computation. In addition to the inversion accuracy, the ability of reduced models of varying dimension to make predictions of the contaminant evolution beyond the time horizon of observations is studied. Results indicate that the reduced models have a factor speedup in computing time for the same level of accuracy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The θ‐method is a popular semi‐implicit finite‐difference method for simulating free‐surface flows. Problem stiffness, arising because of the presence of both fast and slow timescale processes, is easily handled by the θ‐method. In most ocean, coastal, and estuary modeling applications, stiffness is caused by fast surface gravity wave timescales imposed on slower timescales of baroclinic variability. The method is well known to be unconditionally stable for shallow water (hydrostatic) models when , where θ is the implicitness parameter. In this paper, we demonstrate that the method is also unconditionally stable for nonhydrostatic models, when for both pressure projection and pressure correction methods. However, the methods result in artificial damping of the barotropic mode. In addition to investigating stability, we also estimate the form of artificial damping induced by both the free surface and nonhydrostatic pressure solution methods. Finally, this analysis may be used to estimate the damping or growth associated with a particular wavenumber and the overall order of accuracy of the discretization. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A 3D axisymmetric Galerkin boundary integral formulation for potential flow is employed to model two fluids of different densities, one fluid enclosed inside the other. The interface variables are the velocity potential and the normal velocity, and they can be solved for separately, the second linear system being symmetric. The algorithm is validated by comparing with the analytic solutions for a static interior spherical drop over a range of values for the relative densities of exterior and interior fluids and various boundary conditions. For time‐dependent simulations utilizing a level set method for the interface tracking, the accuracy has been checked by comparing against the known oscillation frequency of the sphere. Pinch‐off profiles corresponding to an initial two‐lobe geometry drop and D = 6 are also presented. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, we present fully implicit continuous Galerkin–Petrov (cGP) and discontinuous Galerkin (dG) time‐stepping schemes for incompressible flow problems which are, in contrast to standard approaches like for instance the Crank–Nicolson scheme, of higher order in time. In particular, we analyze numerically the higher order dG(1) and cGP(2) methods, which are super convergent of third, resp., fourth order in time, whereas for the space discretization, the well‐known LBB‐stable finite element pair of third‐order accuracy is used. The discretized systems of nonlinear equations are treated by using the Newton method, and the associated linear subproblems are solved by means of a monolithic (geometrical) multigrid method with a blockwise Vanka‐like smoother treating all components simultaneously. We perform nonstationary simulations (in 2D) for two benchmarking configurations to analyze the temporal accuracy and efficiency of the presented time discretization schemes w.r.t. CPU and numerical costs. As a first test problem, we consider a classical ‘flow around cylinder’ benchmark. Here, we concentrate on the nonstationary behavior of the flow patterns with periodic oscillations and examine the ability of the different time discretization schemes to capture the dynamics of the flow. As a second test case, we consider the nonstationary ‘flow through a Venturi pipe’. The objective of this simulation is to control the instantaneous and mean flux through this device. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A hybrid Eulerian‐Lagrangian particle‐in‐cell–type numerical method is developed for the solution of advection‐dominated flow problems. Particular attention is given over to the high‐order transfer of flow properties from the particles to the grid. For smooth flows, the method presented is of formal high‐order accuracy in space. The method is applied to solve the nonlinear shallow water equations resulting in a new, and novel, shock capturing shallow water solver. The approach is able to simulate complex shallow water flows, which can contain an arbitrary number of discontinuities. Both trivial and nontrivial bottom topography is considered, and it is shown that the new scheme is inherently well balanced, exactly satisfying the ‐property. The scheme is verified against several one‐dimensional benchmark shallow water problems. These include cases that involve transcritical flow regimes, shock waves, and nontrivial bathymetry. In all the test cases presented, very good results are obtained.  相似文献   

8.
We present a numerical method for suspensions of spheroids of arbitrary aspect ratio, which sediment under gravity. The method is based on a periodized boundary integral formulation using the Stokes double layer potential. The resulting discrete system is solved iteratively using generalized minimal residual accelerated by the spectral Ewald method, which reduces the computational complexity to , where N is the number of points used to discretize the particle surfaces. We develop predictive error estimates, which can be used to optimize the choice of parameters in the Ewald summation. Numerical tests show that the method is well conditioned and provides good accuracy when validated against reference solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The fundamental interaction between tropical cyclones was investigated through a series of water tank experiements by Fujiwhara  6 - 8 . However, a complete understanding of tropical cyclones remains an open research challenge although there have been numerous investigations through measurments with aircrafts/satellites, as well as with numerical simulations. This article presents a computational model for simulating the interaction between cyclones. The proposed numerical method is presented briefly, where the time integration is performed by projecting the discrete system onto a Krylov subspace. The method filters the large scale fluid dynamics using a multiresolution approximation, and the unresolved dynamics are modeled with a Smagorinsky type subgrid scale parameterization scheme. Numerical experiments with Fujiwhara interactions are considered to verify modeling accuracy. An excellent agreement between the present simulation and a reference simulation at has been demonstrated. At , the kinetic energy of cyclones is seen consolidated into larger scales with concurrent enstrophy cascade – suggesting a steady increase of energy containing scales – a phenomena that is typical in two‐dimensional turbulence theory. The primary results of this article suggest a novel avenue for addressing some of the computational challenges of mesoscale atmospheric circulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A weighted residual collocation methodology for simulating two‐dimensional shear‐driven and natural convection flows has been presented. Using a dyadic mesh refinement, the methodology generates a basis and a multiresolution scheme to approximate a fluid flow. To extend the benefits of the dyadic mesh refinement approach to the field of computational fluid dynamics, this article has studied an iterative interpolation scheme for the construction and differentiation of a basis function in a two‐dimensional mesh that is a finite collection of rectangular elements. We have verified that, on a given mesh, the discretization error is controlled by the order of the basis function. The potential of this novel technique has been demonstrated with some representative examples of the Poisson equation. We have also verified the technique with a dynamical core of a two‐dimensional flow in primitive variables. An excellent result has been observed—on resolving a shear layer and on the conservation of the potential and the kinetic energies—with respect to previously reported benchmark simulations. In particular, the shear‐driven simulation at CFL = 2.5 (Courant–Friedrichs–Lewy) and (Reynolds number) exhibits a linear speed up of CPU time with an increase of the time step, Δt. For the natural convection flow, the conversion of the potential energy to the kinetic energy and the conservation of total energy is resolved by the proposed method. The computed streamlines and the velocity fields have been demonstrated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This paper deals with the design of an efficient open boundary condition (OBC) for fluid dynamics problems. Such problematics arise, for instance, when one solves a local model on a fine grid that is nested in a coarser one of greater extent. Usually, the local solution Uloc is computed from the coarse solution Uext, thanks to an OBC formulated as , where Bh and BH are discretizations of the same differential operator (Bh being defined on the fine grid and BH on the coarse grid). In this paper, we show that such an OBC cannot lead to the exact solution, and we propose a generalized formulation , where g is a correction term. When Bh and BH are discretizations of a transparent operator, g can be computed analytically, at least for simple equations. Otherwise, we propose to approximate g by a Richardson extrapolation procedure. Numerical test cases on a 1D Laplace equation and on a 1D shallow water system illustrate the improved efficiency of such a generalized OBC compared with usual ones. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
In this paper, we analyze a stabilized equal-order finite element approximation for the Stokes equations on anisotropic meshes. In particular, we allow arbitrary anisotropies in a subdomain, for example, along the boundary of the domain, with the only condition that a maximum angle is fulfilled in each element. This discretization is motivated by applications on moving domains as arising, for example, in fluid-structure interaction or multiphase-flow problems. To deal with the anisotropies, we define a modification of the original continuous interior penalty stabilization approach. We show analytically the discrete stability of the method and convergence of order in the energy norm and in the L2-norm of the velocities. We present numerical examples for a linear Stokes problem and for a nonlinear fluid-structure interaction problem, which substantiate the analytical results and show the capabilities of the approach.  相似文献   

13.
A modified weakly compressible smoothed particle hydrodynamics (WCSPH) is presented, which utilizes consistent discretization schemes for spatial derivatives in the flow equations. Here, each SPH particle is considered as a computational point that represents a specific part of the fluid. To overcome non‐physical oscillations that usually arise in standard WCSPH, we modified the mass conservation equation by using a numerical filter. This modification is based on the difference between two discretization schemes used for the term . Furthermore, a new implementation of wall boundary condition in SPH is introduced. This condition is imposed on the pressure of wall boundary particles to ensure that the acceleration of each boundary particle in normal direction to the wall is zero. Thus, no penetration through walls will occur. To examine the performance of the modified method, we solved a series of two‐dimensional incompressible internal flow benchmark problems. By comparing the result with analytical solutions and the results of the standard WCSPH, we show that the use of consistent schemes in conjunction with the proposed numerical filter improves both accuracy and speed of the numerical method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
An immersed boundary method based on an FEM has been successfully combined with an elastic spring network model for simulating the dynamical behavior of a red blood cell (RBC) in Poiseuille flows. This elastic spring network preserves the biconcave shape of the RBC in the sense that after the removal of the body force for driving the Poiseuille flow, the RBC with its typical parachute shape in a tube does restore its biconcave resting shape. As a benchmark test, the relationship between the deformation index and the capillary number of the RBCs flowing through a narrow cylindrical tube has been validated. For the migration properties of a single cell in a slit Poiseuille flow, a slipper shape accompanied by a cell membrane tank‐treading motion is obtained for Re , and the cell mass center is away from the center line of the channel due to its asymmetric slipper shape. For the lower Re ?0.0137, an RBC with almost undeformed biconcave shape has a tumbling motion. A transition from tumbling to tank‐treading happens at the Reynolds number between 0.0137 and 0.03. In slit Poiseuille flow, the RBC can also exhibit a rolling motion like a wheel during the migration when the cell is released in the fluid flow with φ = π/2 and θ = π/2 (see Figure 12 for the definition of φ and θ). The lower the Reynolds number, the longer the rolling motion lasts; but the equilibrium shape and position are independent from the cell initial position in the channel. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
This paper introduces tensorial calculus techniques in the framework of POD to reduce the computational complexity of the reduced nonlinear terms. The resulting method, named tensorial POD, can be applied to polynomial nonlinearities of any degree p. Such nonlinear terms have an online complexity of , where k is the dimension of POD basis and therefore is independent of full space dimension. However, it is efficient only for quadratic nonlinear terms because for higher nonlinearities, POD model proves to be less time consuming once the POD basis dimension k is increased. Numerical experiments are carried out with a two‐dimensional SWE test problem to compare the performance of tensorial POD, POD, and POD/discrete empirical interpolation method (DEIM). Numerical results show that tensorial POD decreases by 76× the computational cost of the online stage of POD model for configurations using more than 300,000 model variables. The tensorial POD SWE model was only 2 to 8× slower than the POD/DEIM SWE model but the implementation effort is considerably increased. Tensorial calculus was again employed to construct a new algorithm allowing POD/DEIM SWE model to compute its offline stage faster than POD and tensorial POD approaches. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a new spectral model for solving the fully nonlinear potential flow problem for water waves in a single horizontal dimension. At the heart of the numerical method is the solution to the Laplace equation which is solved using a variant of the σ ‐transform. The method discretizes the spatial part of the governing equations using the Galerkin method and the temporal part using the classical fourth‐order Runge‐Kutta method. A careful investigation of the numerical method's stability properties is carried out, and it is shown that the method is stable up to a certain threshold steepness when applied to nonlinear monochromatic waves in deep water. Above this threshold artificial damping may be employed to obtain stable solutions. The accuracy of the model is tested for: (i) highly nonlinear progressive wave trains, (ii) solitary wave reflection, and (iii) deep water wave focusing events. In all cases it is demonstrated that the model is capable of obtaining excellent results, essentially up to very near breaking.  相似文献   

17.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier–Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The appearance of spurious pressure modes in early shallow‐water (SW) models has resulted in two common strategies in the finite element (FE) community: using mixed primitive variable and generalized wave continuity equation (GWCE) formulations of the SW equations. One FE scheme in particular, the P ? P1 pair, combined with the primitive equations may be advantageously compared with the wave equation formulations and both schemes have similar data structures. Our focus here is on comparing these two approaches for a number of measures including stability, accuracy, efficiency, conservation properties, and consistency. The main part of the analysis centres on stability and accuracy results via Fourier‐based dispersion analyses in the context of the linear SW equations. The numerical solutions of test problems are found to be in good agreement with the analytical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The purpose of this work is to compare efficiency of a number of numerical techniques of computation of liquid vorticity from non‐spherical bubble oscillations. The techniques based on the finite‐difference method (FDM), the collocation method (one with differentiating (CMd) the integral boundary condition and another without it (CM)) and the Galerkin method (GM) have been considered. The central‐difference approximations are used in FDM. Sinus functions are chosen as the basis in GM. Problems of decaying a small distortion of the spherical shape of a bubble and dynamics of a bubble under harmonic liquid pressure variation with various parameters are used for comparison. The FDM technique has been found to be most efficient in all the cases. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

20.
The effect of periodic rectangular wall roughness on planar nanochannel flow is investigated by dissipative particle dynamics simulation. The wall protrusion length is varied, and its effect on the flow is examined. Analysis of particle trajectories and average residence time reveals temporary trapping of fluid particles inside the rectangular cavities for a considerable amount of time. This trapping affects the density, velocity, pressure, and temperature distribution inside and close to the cavities. Inside the cavities, low‐velocity regions and regions of high density related to high pressure and high temperature are observed. When compared with that of the channel with flat walls case, lower flow velocities, temperatures, and pressures are observed for grooved channels. The reduction of the above quantities is more pronounced as the protrusion length, that is, the roughness characteristic length, decreases. Finally, the relation of friction factor, f, with the flow Reynolds number is discussed. The model predicts = constant in the range . The results of this work are of direct relevance to the design of nanofluidic devices. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号