首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 454 毫秒
1.
Neutron-diffraction experiments reveal that ErFe6Ga6 forms in the tetragonal ThMn12-type of structure (space group I4/mmm). The Fe sublattice orders ferromagnetically below K. The Er moments order antiparallel to the Fe moments which, below about 250 K, leads to a decrease of the total magnetization. The easy magnetization direction of ErFe6Ga6 is perpendicular to the c-axis in the whole temperature range. Refinement at 2 K shows that ErFe6Ga6 orders ferrimagnetically with Er moments of 8.5 (2) and Fe moments at the 8(j) site of 1.9 (1) and at the 8(f) site of 1.7 (1) , respectively. At room temperature, ErFe6Ga6 exhibits the same type of magnetic order, however with substantially lower Er moments of 1.0 (4) and Fe moments at the 8(f) site of 1.2 (2) . The Fe moments at the 8(j) site amount to 1.9 (5) /Fe. Received 24 November 1999 and Received in final form 27 March 2000  相似文献   

2.
成东风  勾成 《中国物理》1997,6(1):24-27
The crystallographic and magnetic structures of Ho2Fe9Ga8 and Ho2Fe9Ga6AI2 were studied by powder neutron diffraction at room temperature. The atom fractional occupancies of Ga and Al and the magnetic moments of Ho and Fe were obtained by using Rietveld analysis program. The magnetic structures of the two samples show an easy-axis anisotropy, with the Fe magnetic moment being ferrimagneticlly coupled to those of Ho.  相似文献   

3.
Orthorhombic EuPdSb is known to undergo two magnetic transitions, at 12 K and at T N≃ 18 K, and in phase III (T < 12 K), single crystal magnetisation data have shown that the spin structure is collinear antiferromagnetic, with magnetic moments along the crystal a axis. From a 151Eu M?ssbauer absorption study, we show that, at any temperature within phase III, all the moments have equal sizes, and that in phase II (12 K< T <18 K) the magnetic structure is modulated and incommensurate with the lattice spacings. The modulation is close to a pure sine-wave just below T N = 18 K, and it squares up as temperature is lowered. We measured the thermal variations of the first and third harmonics of the moment modulation, and we could determine the first and third harmonics of the exchange coupling. We furthermore show that the antiferromagnetic-incommensurate transition at 12 K is strongly first order, with a hysteresis of 0.05 K, and that the incommensurate-paramagnetic transition at 18 K is weakly first order. Finally, we present an explanation of the spin-flop transition observed in the single crystal magnetisation data in phase III when || in terms of an anisotropic molecular field tensor. Received 17 January 2001 and Received in final form 20 March 2001  相似文献   

4.
The element distributions and the magnetic ordering behaviour of compounds RNi10Si2 (R = Tb, Dy, Ho, Er, Tm) have been studied by neutron powder diffraction down to temperatures of 1.6 K. The compounds crystallize in an ordered variant of the ThMn12 structure type in the tetragonal space group P4/nmm. An ordered 1:1 distribution of Ni and Si on sites 4d and 4e, respectively, corresponds to a modulation vector [0, 0, 1] with respect to the space group I4/mmm of the ThMn12 structure. TbNi10Si2 orders antiferromagnetically below T N = 4.5 K with a magnetic propagation vector of [0, 0, 1/2]. The magnetic Tb moments, 8.97(2) /Tb atom at 1.6 K, are aligned along the c-axis. The Ni sites in TbNi10Si2 do not carry any ordered magnetic moments. The compounds with R = Dy, Ho, Er, and Tm are paramagnetic down to 1.6 K and 3.0 K, respectively. Received 10 July 2002 / Received in final form 12 September 2002 Published online 29 October 2002  相似文献   

5.
A neutron diffraction study, as a function of temperature, of the title compounds is presented. The whole family (space group Immm, a ≈ 3.8?, b ≈ 5.8?, c ≈ 11.3?) is structurally characterised by the presence of flattened NiO6 octahedra that form chains along the a-axis, giving rise to a strong Ni-O-Ni antiferromagnetic interaction. Whereas for Y-compound only strong 1D correlations exist above 1.5 K, presenting the Haldane gap characteristic of 1D AF chain with integer spin, 3D AF ordering is established simultaneously for both R and Ni sublattices at temperatures depending on the rare earth size and magnetic moment. The magnetic structures of R2BaNiO5 ( R = Nd, Tb, Dy, Ho, Er and Tm) have been determined and refined as a function of temperature. The whole family orders with a magnetic structure characterised by the temperature-independent propagation vector = (1/2, 0, 1/2). At 1.5 K the directions of the magnetic moments differ because of the different anisotropy of the rare earth ions. Except for Tm and Yb (which does not order above 1.5 K), the magnetic moment of the R3+ cations are close to the free-ion value. The magnetic moment of Ni2+ is around 1.4 , the strong reduction with respect to the free-ion value is probably due to a combination of low-dimensional quantum effects and covalency. The thermal evolution of the magnetic structures from T N down to 1.5 K is studied in detail. A smooth re-orientation, governed by the magnetic anisotropy of R3+, seems to occur below and very close to T N in some of these compounds: the Ni moment rotates from nearly parallel to the a-axis toward the c-axis following the R moments. We demonstrate that for setting up the 3D magnetic ordering the R-R exchange interactions cannot be neglected. Received 19 July 2001  相似文献   

6.
Mössbauer effect of Fe57 embedded as very dilute substitutional impurities in Pd2MnSn was studied. The impurities are seen to replace the three elements in the alloy. Although the Curie temperature of the alloy is 189K, well below the room temperature, the Mössbauer spectrum recorded at room temperature consisted of two distinct 6-finger magnetic hyperfine spectra and a single unsplit line. One of the 6-finger patterns which corresponds to an internal magnetic field ofH int=?375 kOe is inferred to arise due to local magnetic coupling of the localized magnetic moments of Fe impurities at the Pd sites with those of the 4 Mn first nearest neighbours of the Fe impurities. The other 6-finger pattern which corresponds to an internal magnetic field ofH int=?335 kOe is inferred to arise due to the local magnetic coupling of the localized magnetic moments of the Fe impurities at the Sn sites with those of the 6 Mn second nearest neighboours of the Fe impurities. The difference in the internal magnetic fields observed at the Pd and Sn sites in the alloy could be understood qualitatively, on the basis of RKKY theory, as arising due to the different conduction electron polarization contributions to the net internal magnetic field at the Fe impurity sites. The results of the measurements suggest that the localized magnetic moments of Fe57 impurities at Pd and Sn sites are antiferromagnetically coupled with the moments of their neighbouring Mn atoms.  相似文献   

7.
The magnetic properties of the cyclic compound [Fe6(bicine)6] LiClO4 . 2MeOH are reported. The cluster Fe6(bicine)6 forms an antiferromagnetically coupled ring structure of Fe III ions. The magnetic susceptibility is measured between 2 and 300 K and yields the exchange coupling of J/k B = - 27.5±0.5 K. The field dependence of the magnetic moment is studied at 3 and 6 K in magnetic fields up to 5 T. The zero-field splitting of the first excited spin states with S = 2 and 3 are determined by ESR at 94 GHz. The intra-molecular interactions of the Fe III ions are analyzed and the on-site anisotropy of the Fe III due to the ligand-configuration is determined to d /k B = - 0.633±0.008K. Received 28 October 2002 / Received in final form 22 February 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: bernd@piobelix.physik.uni-karlsruhe.de  相似文献   

8.
Intermetallics crystallizing in ThMn12 type structure were investigated. Magnetostatic measurements showed that the magnetic ordering temperature and the magnetic moment of YFe6Al6 samples depend strongly on thermal and mechanical treatment. These measurements for a powdered sample of YFe6Al6 showed that the alloy was a ferromagnet with a Curie temperatureT C =265 K and a magnetic moment μ=5.1 μB/f.u. at 77.4 K. From X-ray, magnetostatic and Mössbauer effect measurements it appears that the Fe atoms prefer the 8j and 8f crystallographic positions. Magnetostatic measurements for a powdered sample of DyFe6Al6 showed that this alloy was a ferrimagnet with the ordering temperatureT 0=311 K and magnetic moment μ=1.1 μB/f.u. at 77.4 K.  相似文献   

9.
We have succeeded in obtaining well-resolved M?ssbauer spectra of 57Fe arising from short-lived 57Mn ( T 1/2 = 1.45 min) in Si and KMnO4. The M?ssbauer spectra of 57Fe in Si are well fitted with a curve consisting of two singlet lines, one being assigned as the interstitial Fe atoms and the other as substitutional ones. The relative intensities of the two lines infer that 60% of 57Fe ( ←57Mn) atoms land at the interstitial sites and 40% at the substitutional sites at temperatures between 30 K and 296 K. The result for the KMnO4 sample suggests a presence of an exotic chemical species corresponding to a higher valence state than Fe6 +. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   

10.
We present the results of an extensive Mössbauer study of the magnetic and martensitic transformation at room temperature of a polycrystalline alloy with a Ni55Fe19Ga26 nominal composition. From calorimetric measurements, we have determined the martensitic transformation temperature of T M ≈ 240 K, in good agreement with the one obtained by magnetic characterization. This sample has a Curie temperature of T C ≈ 287 K. Additional Curie temperatures, belonging to a γ phase, have been also detected. Mössbauer spectroscopy performed at different temperatures monitored all these transformations and the fitting of the obtained spectrum at the highest temperature allow us to give percentages of the different phases in the sample.  相似文献   

11.
We have studied the isothermal entropy change around a first-order structural transformation and in correspondence to the second-order Curie transition in the ferromagnetic Heusler alloy Ni2.15Mn0.85Ga. The results have been compared with those obtained for the composition Ni2.19Mn0.81Ga, in which the martensitic structural transformation and the magnetic transition occur simultaneously. With a magnetic field span from 0 to 1.6 T, the magnetic entropy change reaches the value of 20 J/kg K when transitions are co-occurring, while 5 J/kg K is found when the only structural transition occurs. Received 27 September 2002 / Received in final form 17 February 2003 Published online 11 April 2003 RID="a" ID="a"e-mail: solzi@fis.unipr.it  相似文献   

12.
Using 155Gd M?ssbauer spectroscopy down to 27 mK, we show that, in the geometrically frustrated pyrochlore Gd2Sn2O7, the Gd3+ hyperfine levels are populated out of equilibrium. From this, we deduce that the hyperfine field, and the correlated Gd3+ moments which produce this field, continue to fluctuate as T ↦ 0. With a model of a spin 1/2 system experiencing a magnetic field which reverses randomly in time, we obtain an analytical expression for the steady state probability distribution of the level populations. This distribution is a simple function of the ratio of the nuclear spin relaxation time to the average electronic spin-flip time. In Gd2Sn2O7, we find the two time scales are of the same order of magnitude. We discuss the mechanism giving rise to the nuclear spin relaxation and the influence of the electronic spin fluctuations on the hyperfine specific heat. The corresponding low temperature measurements in Gd2Ti2O7 are presented and discussed. Received 17 October 2001 Published online 6 June 2002  相似文献   

13.
The crystal and magnetic structure of Ho2NiGe6 was studied by powder neutron diffraction. The paramagnetic neutron diffraction data confirmed the Ce2CuGe6-type crystal structure reported earlier for this compound. Below the Néel temperature equal to 11 K the Ho magnetic moments form a uniaxial antiferromagnetic ordering. The Ho magnetic moments equal to 8.16(7)μB at 1.5 K are parallel to the b-axis. The data are compared with those published for HoNi0.46(6)Ge2.  相似文献   

14.
Neutron powder diffraction was employed to study the pressure effect on the magnetic transition in the pseudobinary Laves-phase compound Er0.57Y0.43Co2 and to determine the magnetic moments of the Er- and Co-subsystems. Our studies reveal that the onset of long-range magnetic order for both the localized 4 f (Er) and itinerant 3 d (Co) electron moments appears at about the same temperature at ambient pressure. The pressure effect on Tc is found to be negative and equal for both sublattices, namely T c / p ∼ - 0.4 K/kbar. The values of the magnetic moments of the Er and the Co ions are found = 5.40±0.15μ B /atom, = 0.50±0.07μ B /atom and 5.35±0.15μ B /atom, 0.37±0.09μ B /atom, for p = 0 and 6 kbar, respectively. Our experimental results give evidence for short-range magnetic order formation at temperatures already above Tc and for a coexistence short- and long-range order below Tc down to 4 K. Received 20 December 2001 / Received in final form 12 June 2002 Published online 31 October 2002 RID="a" ID="a"e-mail: andrew.podlesnyak@psi.ch  相似文献   

15.
Mössbauer and magnetization measurements on the Chevrel phase compound FeMo6Se8, have been made between 1.5 and 295 K. Iron atoms are found to occupy one crystallographic site due to the triclinically distorted structure. The measurements indicate an inhomogeneous magnetic transition between 54 and 72 K.  相似文献   

16.
Low frequency transport measurements are performed on GdSr2RuCu2O8 pellets. The observed current-voltage curves are qualitatively explained in the framework of a simple phenomenological model accounting for coexistence in the sample of ferromagnetism and superconductivity. A Curie temperature T cM = 133 K and a superconducting critical temperature T cS = 18 K, with an onset temperature T cO = 33 K, are extracted from the analysis of the current-voltage curves. Received 18 September 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: canio@sa.infn.it  相似文献   

17.
The time-resolved photoluminescence spectra of ordered and disordered Ga0.52In0.48P alloys were studied at room temperature and at 77 K liquid nitrogen, respectively. The ordered samples have well fitted two exponential processes decay curves and the time constants are sample dependent and have little relationship with the ordering degree. The decay curve of disordered sample shows that it has single exponential process and its lifetime has a tendency of reduction with the decrease of excitation intensity. The photoluminescence spectra with different delay time at 77 K show that the ordered samples exhibit about 6 ∼ 10 meV blue-shift of PL peak energy with the delay time. Received 13 December 2001 Published online 19 July 2002  相似文献   

18.
A polarised neutron scattering investigation has been carried out on a powder sample of CuGeO3 within the temperature range of 1.5 K to 600 K. The magnetic scattering has been separated from all other contributions by using polarised neutrons and polarisation analysis and placed onto an absolute scale. At low temperatures the long wavelength components of the paramagnetic response are suppressed consistent with the formation of Cu dimers in which the magnetic moments are correlated antiferromagnetically. This form of the scattering persists to temperatures well above the dimerisation temperature T sp ∼ 14 K. However as the temperature is raised the intensity of the long wavelength spin fluctuations increases and above 150 K they are the dominant feature in the wave vector dependence of the response. At all temperatures the observed scattering extrapolates smoothly to the Q = 0 value given by the uniform susceptibility. Consequently the thermal variation of the uniform susceptibility arises from the evolution of the long wavelength magnetic fluctuations. At large wave vectors the energy dependence of the scattering revealed that the response occurs below 16 meV in agreement with the reported maximum magnetic excitation energy at the zone boundary in the ground state. However the total magnetic scattering is significantly less than that expected for a local moment system suggesting that the spectrum of thermal and quantum fluctuations overlap. Received 30 May 2000 and Received in final form 22 March 2001  相似文献   

19.
Magnetic circular dichroism (MCD) in X-ray absorption has been measured at the L 2, 3 edges of Fe in ex-situ grown Fe and Fe 0.50 Co 0.48 V 0.02 films by means of the transmission method. A new approach is developed for fitting the observed transmittance, which describes the resonance lineshapes as (generalized) Fano profiles. Analytical integration of each single resonance allows a more reliable determination of the orbital and spin magnetic moments based on the MCD sum rules. The results are consistent with an increase of the Fe spin and orbital magnetic moment in Fe-Co alloys as obtained by other experiments and band structure calculations. Received 15 August 2000 and Received in final form 11 June 2001  相似文献   

20.
Novel icosahedral quasicrystals, in which Fe atoms possess a magnetic moment, have been found in Al70?x BxPd30?y Fey compounds with 5<x<10 and 10<y<20. The compounds have ferromagnetic properties, and their Curie temperature ranges between 280 and 340 K, the saturation magnetization σ s(5 K)≈7.5 emu/g. It follows from Mössbauer spectra that only a fraction of Fe atoms (12 to 15%) are magnetically ordered at 4.2 K, and the mean saturation field 〈H hf〉=96 kOe. The isomer shift values confirm that the atomic volume of magnetic Fe sites is larger than that of nonmagnetic Fe sites. The magnetic properties of these quasicrystals can be interpreted in terms of large magnetic clusters with a size of 185 to 290 Å. This size correspond to about 4×104 “unit cells,” hence the magnetic state can be described in terms of bulk parameters. The localized magnetic moment of Fe atoms is tentatively ascribed to bonding between Fe and B, similarly to that in the amorphous Fe~50B~50 alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号