首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 434 毫秒
1.
The transient thermal boundary layer flow around a square obstruction placed at the middle of the hot wall in a differentially heated cavity is visualized using a shadowgraph technique. The results show that the thermal boundary layer flow, which is blocked by the obstruction, firstly forms an intrusion head under the obstruction (the lower intrusion head). Subsequently, the lower intrusion head bypasses the obstruction and reattaches to the down-stream boundary. During the reattachment process, a more complicated flow is induced, and eventually both the lower intrusion head and the thermal boundary layer destabilize. After the lower intrusion head is convected away, the thermal boundary layer flow re-stabilizes. At the quasi-steady state, the thermal boundary layer forms a double-layer structure, which is split into two sections by the obstruction. It is demonstrated that both the transient processes and the quasi-steady state flow structures of the thermal boundary layer are significantly altered by the obstruction in comparison with the case without the obstruction.  相似文献   

2.
The natural convection in a reservoir sidearm induced by solar radiation is visualised using a shadowgraph technique. The flow visualisation reveals three stages of the flow development, namely an initial growth stage, a transitional stage and a quasi-steady stage. At the initial growth stage, a distinct thermal boundary layer grows rapidly along the sloping bottom. The transitional stage is characterised by the onset of convective instability in a form of rising plumes. At the quasi-steady state, the mean temperature across the enclosure increases steadily in time and the flow is sighted with quasi-regular presence of instabilities with reduced intensities. Received: 3 July 2001/Accepted: 10 December 2001  相似文献   

3.
Large-eddy simulations (LES) are employed to understand the flow field over a NACA 0015 airfoil controlled by a dielectric barrier discharge (DBD) plasma actuator. The Suzen body force model is utilised to introduce the effect of the DBD plasma actuator. The Reynolds number is fixed at 63,000. Transient processes arising due to non-dimensional excitation frequencies of one and six are discussed. The time required to establish flow authority is between four and six characteristic times, independent of the excitation frequency. If the separation is suppressed, the initial flow conditions do not affect the quasi-steady state, and the lift coefficient of the higher frequency case converges very quickly. The transient states can be categorised into following three stages: (1) the lift and drag decreasing stage, (2) the lift recovery stage, and (3) the lift and drag converging stage. The development of vortices and their influence on control is delineated. The simulations show that in the initial transient state, separation of flow suppression is closely related to the development spanwise vortices while during the later, quasi-steady state, three-dimensional vortices become more important.  相似文献   

4.
An unsteady gas-particle flow in a hypersonic shock tunnel is studied numerically. The study is performed in the period from the instant when the diaphragm between the high-pressure and low-pressure chambers is opened until the end of the transition to a quasi-steady flow in the test section. The dispersed phase concentration is extremely low, and the collisions between the particles and their effect on the carrier gas flow are ignored. The particle size is varied. The time evolution of the particle concentration in the test section is obtained. Patterns of the quasi-steady flow of the dispersed phase in the throat of the Laval nozzle and the flow around a model (sphere) are presented. Particle concentration and particle velocity lag profiles at the test-section entrance are obtained. The particle-phase flow structure and the time needed for it to reach a quasi-steady regime are found to depend substantially on the particle size. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 102–113, September–October, 2008.  相似文献   

5.
Two‐dimensional incompressible jet development inside a duct has been studied in the laminar flow regime, for cases with and without entrainment of ambient fluid. Results have been obtained for the flow structure and critical Reynolds number values for steady asymmetric jet development and for the onset of temporal oscillations, at various values of the duct‐to‐jet width ratio (aspect ratio). It is found that at low aspect ratios and Reynolds numbers, jet development inside the duct is symmetric. For larger aspect ratios and Reynolds numbers, the jet flow at steady state becomes asymmetric with respect to the midplane, and for still higher values, it becomes oscillatory with respect to time. When entrainment is present, the instabilities of asymmetric development and temporal oscillations occur at a much higher critical Reynolds number for a given aspect ratio, indicating that the stability of the jet flow is higher with entrainment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
Summary This is a theoretical investigation of the unsteady laminar flow of a viscous incompressible fluid between two infinite parallel disks, which are rotating with angular velocities varying with time. The solution is obtained in the form of a series expansion about the quasi-steady state. The deviation of the actual instantaneous state of the flow from the quasi-steady state is determined.  相似文献   

7.
侧加热腔内的自然对流   总被引:1,自引:0,他引:1  
徐丰  崔会敏 《力学进展》2014,44(1):201403
开展侧加热腔内自然对流的研究具有重大的环境及工业应用背景. 总结侧加热腔内水平温差驱动的自然对流的最新研究进展, 并概述相应的流动性质、动力机制和传热特性以及对不同无量纲控制参数的依赖也有重要的科学价值. 已取得的研究结果显示突然侧加热的腔内自然对流的发展可包括初始阶段、过渡阶段和定常或准定常阶段. 不同发展阶段的流动依赖于瑞利数、普朗特数及腔体的高宽比, 且定常或准定常阶段的流态可以是定常层流流动、非定常周期性流动或者湍流流动. 此外, 回顾了对流流动失稳机制的研究成果以及湍流自然对流方面的新进展. 最后, 展望了侧加热腔内的自然对流研究的前景.   相似文献   

8.
The results of a numerical and experimental investigation of the starting of jet-engine annular nozzle blown with the air at room temperature and high-temperature combustion products of a stoichiometric acetylene-air mixture in an intermittent aerodynamic setup are presented. The regimes and the times of the attainment of quasi-steady stAte of the flow are studied in the virtual full-scale counterpart of the experimental setup. The special features of the starting stage and the quasi-steady flow are studied for entry channels of different shapes. The values of starting times, the pressures at different points of the flow duct, and the thrusts produced by the annular nozzle measured in the physical experiment and obtained in the virtual experimental setup are compared.  相似文献   

9.
A numerical study of the heat and mass transfer from an evaporating fuel droplet in oscillatory flow was performed. The flow was assumed to be laminar and axisymmetric, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on these assumptions, the conservation equations in a general curvilinear coordinate were solved numerically. The behaviors of droplet evaporation in the oscillatory flow were investigated by analyzing the effects of flow oscillation on the evaporation process of a n-heptane fuel droplet at high pressure.The response of the time history of the square of droplet diameter and space-averaged Nusselt numbers to the main flow oscillation were investigated in frequency band of 1–75 Hz with various oscillation amplitudes. Results showed that, depending on the frequency and amplitude of the oscillation, there are different modes of response of the evaporation process to the flow oscillation. One response mode is synchronous with the main flow oscillation, and thus the quasi-steady condition is attained. Another mode is asynchronous with the flow oscillation and is highly unsteady. As for the evaporation rate, however, in all conditions is more greatly enhanced in oscillatory flow than in quiescent air.To quantify the conditions of the transition from quasi-steady to unsteady, the response of the boundary layer around the droplet surface to the flow oscillation was investigated. The results led to including the oscillation Strouhal number as a criteria for the transition. The numerical results showed that at a low Strouhal number, a quasi-steady boundary layer is formed in response to the flow oscillation, whereas by increasing the oscillation Strouhal number, the phenomena become unsteady.  相似文献   

10.
Two methods of mechanically exciting a plane turbulent free jet are described; periodic perturbatin of the nozzle exit velocity, and forced oscillation of a small vane located in the het potential core. Hot-wire measurements obtained by conditional sampling techniques indicated that the flow fields of the two jets are substantially different although they have the same Strouhal number of 0.0032. While the mean flow development of the pulsed jet can be described adequately by a quasi-steady model, the vane-excited jet exhibits unsteady effects which depart significantly from quasi-steady approximations such as increased entrainment, amplification of excitation and non-linear effects in the form of the presence of high harmonics. The constancy of momentum flux has been examined in both the steady and unsteady jets  相似文献   

11.
DNS of a turbulent channel flow subjected to a step change in pressure gradient are performed to facilitate a direct comparison between ramp-up and ramp-down flows. Strong differences are found between behaviours of turbulence in the two flows. The wall shear stress in the ramp-up flow first overshoots, and then strongly undershoots the quasi-steady value in the initial stage of the excursion, before approaching the quasi-steady value. In a strongly decelerating flow, the wall shear stress tends to first undershoot but then overshoot the quasi-steady value. ??Slow?? response of turbulence as well as flow inertia is responsible for these behaviours. In the ramp-up flow, the response of turbulence is similar to that observed in uniformly accelerating flows from previous studies, exhibiting a three-stage development. However, the transition between the various stages is more gradual and the responding stage is much longer and slower in the flows considered here. It has been shown that the delay in the near wall region is longer than that in the buffer layer confirming that turbulence response first occurs at the location of peak turbulence production. In a strongly decelerating flow, the response of turbulence exhibits a two-stage development. In both ramp-up and ramp down flows, the energy distribution in the three components of turbulent kinetic energy deviates from that of the steady flow. In a ramp-up flow, more energy is in $u_1^\prime $ and less in $u_2^\prime $ and $u_3^\prime $ , whereas the trend is reversed in a ramp-down flow. This is a reflection of the redistribution of turbulence from $u_1^\prime $ to $u_2^\prime $ and $u_3^\prime $ .  相似文献   

12.
Only a few studies have been devoted to the experimental study of the initial stage of the motion of a liquid from the state of rest in a closed delivery conduit [1]. It can be concluded on the basis of the results of these studies that at the beginning of the process the mechanical energy losses are smaller than in quasistationary flow. These studies also suggest that the laminar nature of the flow persists in the nonstationary flow. However, investigations are of an integral nature and therefore in them the flow structure is not determined. In the present study the development of the motion of the liquid in a delivery conduit from the state of rest is investigated. The tangential frictional stresses at the wall of the conduit, measured by the thermal anemometric method, show that the transitional Reynolds number, at which the laminar flow regime changes into turbulent, depends on the acceleration of the flow and far exceeds the critical value for the case of the stationary flow. At maximum acceleration of the flow equal to 11.78 m/sec2 the transition of the laminar regime to the turbulent at the wall of the conduit occurs at Re = 234, 500. The loss coefficients of mechanical energy have been computed from experimental results, which show that the use of the corresponding coefficient of quasistationary turbulent flow in the computation leads to appreciable errors.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 79–85, November–December, 1977.  相似文献   

13.
The development region of a free round turbulent jet was experimentally investigated in order to determine the dependence of the jet development on the exit conditions. In particular the influence of the exit conditions on the entrainment rate in both the axisymmetrix mixing layer region and at a distance of 20D from the nozzle was investigated.The entrainment rate at 20D depends noticeably on the exit boundary layer state, i.e. laminar or turbulent, and on the turbulence intensity of the core. A laminar exit boundary layer showed the highest value of entrainment rate. A turbulent one reduced the entrainment rate at 20D by 15%. A grid placed at the nozzle exit, in order to increase the turbulence intensity of the core, reduced the entrainment rate at 20D by 40%. It must be mentioned that this grid also disturbed the exit boundary layer.An empirical relation for the entrainment rate at the end of the mixing layer region as a function of the mixing layer parameters, is successful in predicting the entrainment rate at 20D within an accuracy of 5%. This result suggests a strong dependence of the jet development region on mixing layer processes, i.e. the development of organized structures and their coalescence. Possibly there is no asymptotic region which is fully independent of the mixing layer processes, and which is not more or less influenced by the exit conditions via the influence on these processes.  相似文献   

14.
The average dynamics of immiscible fluids with different densities in a horizontal axially vibrating cylinder are studied. The angular velocity is sufficient to sustain the centrifuged state of the fluids. The vibration and rotation frequencies are of the same order. The generation of toroidal vortices periodic along the rotation axis and the formation of quasi-steady interface relief with axially periodic axisymmetric crimps are detected. It is shown that the vortex flow is associated with the generation of an inertial axisymmetric standing wave. The formation of the quasi-steady relief is induced by the development of the Kelvin-Helmholtz instability on the fluid interface under tangential vibration.  相似文献   

15.
In this study, we investigate the transition of a swirling vortex from a one-celled to a two-celled vortex structure in a rotating tank. The main idea is to initiate the flow by siphoning fluid out of the tank and then to lift the siphoning mechanism out of the water within a short period of time. Before it reaches a state of quasi-two-dimensionality, the core region of the vortex can be roughly divided into three stages. (1) A siphoning stage induces the formation of the one-celled vortex. (2) A downward jet impingement stage triggers the transition of the vortex into the two-celled one. (3) A detachment stage of the inner cell leads to a cup-like recirculation zone, which is pushed upward by an axial flow from the boundary layer. This eventually develops into a stable quasi-two-dimensional barotropic vortex. The core region is enclosed by an outer region, which is in cyclostrophic balance. In the siphoning stage, the flow pattern can be well fitted by Burgers’ vortex model. However, in the post-siphoning stage, the present data show a flow pattern different from the existing two-celled models of Sullivan and Bellamy-Knights. Flow details, including flow patterns, velocity profiles, and surface depressions were measured and visualized by particle tracking velocimetry and the dye-injection method with various colors. The one-celled and two-celled flow structures are also similar to the conceptual images of the one- and two-celled tornadoes proposed in the literature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
This third part of the study deals with the time-dependent nature of vortex breakdown. The results show the unsteady velocity and vorticity field of the initiation and development of breakdown and transition between both predominant breakdown modes, the bubble and the spiral. During the development to breakdown, the generated amount of circumferential vorticity follows the theoretical prediction by Brown and Lopez (1990). This confirms the idea of positive feedback as the key-mechanism leading to vortex breakdown. We regard the bubble-type as the fundamental breakdown type, that is stationary and nearly axisymmetric. The circumferential vorticity is distributed in a form of an elliptical vortex-ring-like structure. Starting from this stage, an increase of volume flux to a higher Reynolds number leads to the transition to the spiral-type with an initial stretching of the vortex ring-like structure and a subsequent change to an asymmetric circumferential vorticity distribution. This in combination with the inductive effect causes the front stagnation point to be deflected radially away and later to rotate around the centerline. Consequently the approaching vortex core is radially deflected in opposite direction and evolves in a spiral path. The idea of a second positive feedback-mechanism gives a possible explanation for the transition. Following this theory the asymmetry of circumferential vorticity will trigger itself at a certain degree by the interaction with the inductively affected stagnation point and its influence on the approaching vortex core. This self-enhancing process will finally lead to the spiral-type breakdown in which the radial distance between rotating stagnation point and deflected vortex core is of the order of the characteristic vortex core radius. The reversed transition from the spiral to a stable bubble-type can be regenerated by decreasing the Reynolds number down to the value that corresponds to the stable bubble state. The flow structure evolves nearly in the time-reversed way as during transition from bubble towards the spiral.  相似文献   

17.
Transition initiated by a pair of oblique waves was investigated experimentally in a Blasius boundary layer flow by using hot-wire measurements and flow visualisation. The oblique waves were generated by periodic blowing and suction through an array of pipes connecting to the flow through a transverse slit in the flat plate model. The structure of the flow field is described and the amplitude of individual frequency-spanwise wave number modes was determined from Fourier transforms of the disturbance velocity. In contrast to results from investigations of oblique transition at subcritical flow conditions, the transition process at the present conditions suggests the combined effect of non-modal growth of streaks and a second stage with exponential growth of oblique waves to initiate the final breakdown stage.  相似文献   

18.
In this paper, in situ experiments have been designed using the full-field deformation technique of Digital Image Correlation (DIC) to characterize non-uniform shrinkage in thermoplastic polymers commonly used in traditional and emerging molding processes. These experiments are capable of characterizing the differences in strains that develop due to thermal gradients and stiction as the polymer shrinks from the molten to the solid state during molding processes. The experimental set-up consists of simulated open molds, a heating stage, thermocouples for temperature measurements, and a video imaging system for DIC. From these experiments, it has been shown that there is a large increase in shrinkage strain associated with the transition of the polymer from the molten to the solid state in a mold with reduced side rigidity, and as it is cooled below the Vicat softening point. Changing the cooling rate from air-cooled to quasi-steady state can eliminate the transition at the Vicat softening point. Furthermore, substantial decreases in shrinkage strain are observed when the polymer is melted in an open mold without mold release, while using mold release produces results similar to that observed with reduced side rigidity. A simple 1D model reasonably explains and predicts the observed trends in the shrinkage behavior due to temperature differences through the thickness of the polymer melt when using high conductivity molds as well as constraint in the polymer melt near the mold resulting from stiction.  相似文献   

19.
激波与爆轰波对撞的数值模拟研究   总被引:2,自引:1,他引:1  
用二阶精度NND差分格式和改进的二阶段化学反应模型模拟了爆轰波与激波的对撞过程,研究了不同强度入射激波对爆轰过渡区域的影响. 当对撞激波较弱时,透射爆轰波演变主要受流动膨胀作用的影响,可划分为对撞影响区、爆轰恢复区和稳定发展区3个阶段. 在爆轰恢复区和稳定发展区,前导激波压力经历一个过冲、然后向稳定爆轰过渡的过程,表现了爆轰波熄爆和再起爆的物理特征. 当对撞激波较强时,可燃混合气体的高热力学参数导致了更高的化学反应活化程度,形成了弱爆轰向稳定爆轰的直接转变.   相似文献   

20.
The establishment of a turbulent mixed layer in a two-layer stratified shear flow, and the rate of entrainment into that layer were studied experimentally in a modified annulus. The modification of the conventional annulus was made by replacing the upper rotating screen with inner rotating sidewalls, extending over the upper half of the channel, so that the flow in the upper layer was nearly uniform and almost laminar, while the bottom layer was quiescent. Vertical density profile measurements were conducted using single electrode conductivity probes. The flow was visualized during the various stages of the experiment using the hydrogen bubble technique.After the start of the sidewalls rotation, the upper layer accelerates from rest, and consequently a transition process is taking place during which the initial density interface between the two layers is developed into a turbulent mixed layer. This turbulent layer is bounded by two sharp interfaces, each separating it from an outer non-turbulent zone. The generation of this five-layer structure seemed to be dominated by instabilities activated by the velocity difference between the upper and lower layer.Once a turbulent mixed layer is formed, entrainment of nonturbulent fluid into that layer is taking place causing its thickness to increase continuously. Depending on the overall Richardson number, based on the channel width, the slope of the entrainment law curve was found to have two different values, each indicating the dominance of a different source of turbulent energy production. For relatively low Richardson numbers, the slope is close to -1.8, implying that the velocity shear across each interface contributes significantly to the entrainment. On the other hand, for larger Richardson numbers the slope is about -1.25, in agreement with previous results of shear-free entrainment experiments.The measured velocity profiles indicate that as long as the mixed layer is not too thick, the radial inhomogeneities are small and the flow may be considered as nearly one-dimensional. It seems, therefore, that for the understanding of entrainment processes occurring in realistic stratified flows, the modified annulus is a more reliable tool than the conventional one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号