首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
In this article, we develop a parameter uniform numerical method for a class of singularly perturbed parabolic equations with a multiple boundary turning point on a rectangular domain. The coefficient of the first derivative with respect to x is given by the formula a0(x, t)xp, where a0(x, t) ≥ α > 0 and the parameter p ∈ [1,∞) takes the arbitrary value. For small values of the parameter ε, the solution of this particular class of problem exhibits the parabolic boundary layer in a neighborhood of the boundary x = 0 of the domain. We use the implicit Euler method to discretize the temporal variable on uniform mesh and a B‐spline collocation method defined on piecewise uniform Shishkin mesh to discretize the spatial variable. Asymptotic bounds for the derivatives of the solution are established by decomposing the solution into smooth and singular component. These bounds are applied in the convergence analysis of the proposed scheme on Shishkin mesh. The resulting method is boundary layer resolving and has been shown almost second‐order accurate in space and first‐order accurate in time. It is also shown that the proposed method is uniformly convergent with respect to the singular perturbation parameter ε. Some numerical results are given to confirm the predicted theory and comparison of numerical results made with a scheme consisting of a standard upwind finite difference operator on a piecewise uniform Shishkin mesh. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1143–1164, 2011  相似文献   

2.
A numerical method is proposed for solving singularly perturbed one-dimensional parabolic convection–diffusion problems. The method comprises a standard implicit finite difference scheme to discretize in temporal direction on a uniform mesh by means of Rothe's method and B-spline collocation method in spatial direction on a piecewise uniform mesh of Shishkin type. The method is shown to be unconditionally stable and accurate of order O((Δx)2t). An extensive amount of analysis has been carried out to prove the uniform convergence with respect to the singular perturbation parameter. Several numerical experiments have been carried out in support of the theoretical results. Comparisons of the numerical solutions are performed with an upwind finite difference scheme on a piecewise uniform mesh and exponentially fitted method on a uniform mesh to demonstrate the efficiency of the method.  相似文献   

3.
In this study, we derive optimal uniform error bounds for moving least‐squares (MLS) mesh‐free point collocation (also called finite point method) when applied to solve second‐order elliptic partial integro‐differential equations (PIDEs). In the special case of elliptic partial differential equations (PDEs), we show that our estimate improves the results of Cheng and Cheng (Appl. Numer. Math. 58 (2008), no. 6, 884–898) both in terms of the used error norm (here the uniform norm and there the discrete vector norm) and the obtained order of convergence. We then present optimal convergence rate estimates for second‐order elliptic PIDEs. We proceed by some numerical experiments dealing with elliptic PDEs that confirm the obtained theoretical results. The article concludes with numerical approximation of the linear parabolic PIDE arising from European option pricing problem under Merton's and Kou's jump‐diffusion models. The presented computational results (including the computation of option Greeks) and comparisons with other competing approaches suggest that the MLS collocation scheme is an efficient and reliable numerical method to solve elliptic and parabolic PIDEs arising from applied areas such as financial engineering.  相似文献   

4.
Superconvergence approximations of singularly perturbed two‐point boundary value problems of reaction‐diffusion type and convection‐diffusion type are studied. By applying the standard finite element method of any fixed order p on a modified Shishkin mesh, superconvergence error bounds of (N?1 ln (N + 1))p+1 in a discrete energy norm in approximating problems with the exponential type boundary layers are established. The error bounds are uniformly valid with respect to the singular perturbation parameter. Numerical tests indicate that the error estimates are sharp; in particular, the logarithmic factor is not removable. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 374–395, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10001  相似文献   

5.
In this paper, parameter-uniform numerical methods for a class of singularly perturbed parabolic partial differential equations with two small parameters on a rectangular domain are studied. Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. The solution is decomposed into a sum of regular and singular components. A numerical algorithm based on an upwind finite difference operator and an appropriate piecewise uniform mesh is constructed. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are given to illustrate the parameter-uniform convergence of the numerical approximations.

  相似文献   


6.
In this paper, we present a posteriori error estimates of gradient recovery type for elliptic obstacle problems. The a posteriori error estimates provide both lower and upper error bounds. It is shown to be equivalent to the discretization error in an energy type norm for general meshes. Furthermore, when the solution is smooth and the mesh is uniform, it is shown to be asymptotically exact. Some numerical results which demonstrate the theoretical results are also reported in this paper.  相似文献   

7.
In this work we are interested in the numerical approximation of 1D parabolic singularly perturbed problems of reaction-diffusion type. To approximate the multiscale solution of this problem we use a numerical scheme combining the classical backward Euler method and central differencing. The scheme is defined on some special meshes which are the tensor product of a uniform mesh in time and a special mesh in space, condensing the mesh points in the boundary layer regions. In this paper three different meshes of Shishkin, Bahkvalov and Vulanovic type are used, proving the uniform convergence with respect to the diffusion parameter. The analysis of the uniform convergence is based on a new study of the asymptotic behavior of the solution of the semidiscrete problems, which are obtained after the time discretization by the Euler method. Some numerical results are showed corroborating in practice the theoretical results on the uniform convergence and the order of the method.  相似文献   

8.
We consider a singularly perturbed reaction–diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis.  相似文献   

9.
Quasi-optimal error estimates are derived for the continuous-time orthogonal spline collocation (OSC) method and also two discrete-time OSC methods for approximating the solution of 1D parabolic singularly perturbed reaction–diffusion problems. OSC with C1 splines of degree r ≥ 3 on a Shishkin mesh is employed for the spatial discretization while the Crank–Nicolson method and the BDF2 scheme are considered for the time-stepping. The results of numerical experiments validate the theoretical analysis and also exhibit additional quasi-optimal results, in particular, superconvergence phenomena.  相似文献   

10.
In this article, we consider a class of singularly perturbed mixed parabolic‐elliptic problems whose solutions possess both boundary and interior layers. To solve these problems, a hybrid numerical scheme is proposed and it is constituted on a special rectangular mesh which consists of a layer resolving piecewise‐uniform Shishkin mesh in the spatial direction and a uniform mesh in the temporal direction. The domain under consideration is partitioned into two subdomains. For the spatial discretization, the proposed scheme is comprised of the classical central difference scheme in the first subdomain and a hybrid finite difference scheme in the second subdomain, whereas the time derivative in the given problem is discretized by the backward‐Euler method. We prove that the method converges uniformly with respect to the perturbation parameter with almost second‐order spatial accuracy in the discrete supremum norm. Numerical results are finally presented to validate the theoretical results.© 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1931–1960, 2014  相似文献   

11.
The diffusion‐discrete absorption (DDA) equation is considered. This equation contains the standard diffusion term and the discrete sorption expressed by a sum of large number of δ‐functions with the support at a non‐uniform mesh multiplied by the unknown function (concentration). The main result of the paper is the homogenization (continualization) of this equation when the small parameter is the characteristic step h of the mesh. The error estimates are proved for the difference of the exact solution of the DDA equation and the solution of the homogenized differential equation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper deals with the numerical approximation of the solution of 1D parabolic singularly perturbed problems of reaction-diffusion type. The numerical method combines the standard implicit Euler method on a uniform mesh to discretize in time and a HODIE compact fourth order finite difference scheme to discretize in space, which is defined on a priori special meshes condensing the grid points in the boundary layer regions. The method is uniformly convergent having first order in time and almost fourth order in space. The analysis of the uniform convergence is made in two steps, splitting the contribution to the error from the time and the space discretization. Although this idea has been previously used to prove the uniform convergence for parabolic singularly perturbed problems, here the proof is based on a new study of the asymptotic behavior of the exact solution of the semidiscrete problems obtained after the time discretization by using the Euler method. Some numerical results are given corroborating in practice the theoretical results.  相似文献   

13.
This article presents a posteriori error estimates for the mixed discontinuous Galerkin approximation of the stationary Stokes problem. We consider anisotropic finite element discretizations, i.e., elements with very large aspect ratio. Our analysis covers two‐ and three‐dimensional domains. Lower and upper error bounds are proved with minimal assumptions on the meshes. The lower error bound is uniform with respect to the mesh anisotropy. The upper error bound depends on a proper alignment of the anisotropy of the mesh, which is a common feature of anisotropic error estimation. In the special case of isotropic meshes, the results simplify, and upper and lower error bounds hold unconditionally. The numerical experiments confirm the theoretical predictions and show the usefulness of the anisotropic error estimator. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

14.
In this work we construct and analyze some finite difference schemes used to solve a class of time‐dependent one‐dimensional convection‐diffusion problems, which present only regular layers in their solution. We use the implicit Euler or the Crank‐Nicolson method to discretize the time variable and a HODIE finite difference scheme, defined on a piecewise uniform Shishkin mesh, to discretize the spatial variable. In both cases we prove that the numerical method is uniformly convergent with respect to the diffusion parameter, having order near two in space and order one or 3/2, depending on the method used, in time. We show some numerical examples which illustrate the theoretical results, in the case of using the Euler implicit method, and give better numerical behaviour than that predicted theoretically, showing order two in time and order N?2log2N in space, if the Crank‐Nicolson scheme is used to discretize the time variable. Finally, we construct a numerical algorithm by combining a third order A‐stable SDIRK with two stages and a third‐order HODIE difference scheme, showing its uniformly convergent behavior, reaching order three, up to a logarithmic factor. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

15.
In this article, we study numerical approximation for a class of singularly perturbed parabolic (SPP) convection-diffusion turning point problems. The considered SPP problem exhibits a parabolic boundary layer in the neighborhood of one of the sides of the domain. Some a priori bounds are given on the exact solution and its derivatives, which are necessary for the error analysis. A numerical scheme comprising of implicit finite difference method for time discretization on a uniform mesh and a hybrid scheme for spatial discretization on a generalized Shishkin mesh is proposed. Then Richardson extrapolation method is applied to increase the order of convergence in time direction. The resulting scheme has second-order convergence up to a logarithmic factor in space and second-order convergence in time. Numerical experiments are conducted to demonstrate the theoretical results and the comparative study is done with the existing schemes in literature to show better accuracy of the proposed schemes.  相似文献   

16.
We consider a class of singularly perturbed elliptic problems posed on a unit square. These problems are solved by using fitted mesh methods by many researchers but no attempts are made to solve them using fitted operator methods, except our recent work on reaction–diffusion problems [J.B. Munyakazi and K.C. Patidar, Higher order numerical methods for singularly perturbed elliptic problems, Neural Parallel Sci. Comput. 18(1) (2010), pp. 75–88]. In this paper, we design two fitted operator finite difference methods (FOFDMs) for singularly perturbed convection–diffusion problems which possess solutions with exponential and parabolic boundary layers, respectively. We observe that both of these FOFDMs are ?-uniformly convergent. This fact contradicts the claim about singularly perturbed convection–diffusion problems [Miller et al. Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 1996] that ‘when parabolic boundary layers are present, …, it is not possible to design an ?-uniform FOFDM if the mesh is restricted to being a uniform mesh’. We confirm our theoretical findings through computational investigations and also found that we obtain better results than those of Linß and Stynes [Appl. Numer. Math. 31 (1999), pp. 255–270].  相似文献   

17.
In the present work, we consider a parabolic convection‐diffusion‐reaction problem where the diffusion and convection terms are multiplied by two small parameters, respectively. In addition, we assume that the convection coefficient and the source term of the partial differential equation have a jump discontinuity. The presence of perturbation parameters leads to the boundary and interior layers phenomena whose appropriate numerical approximation is the main goal of this paper. We have developed a uniform numerical method, which converges almost linearly in space and time on a piecewise uniform space adaptive Shishkin‐type mesh and uniform mesh in time. Error tables based on several examples show the convergence of the numerical solutions. In addition, several numerical simulations are presented to show the effectiveness of resolving layer behavior and their locations.  相似文献   

18.
By using a special interpolation operator developed by Girault and Raviart (finite element methods for Navier‐Stokes Equations, Springer‐Verlag, Berlin, 1986), we prove that optimal error bounds can be obtained for a fourth‐order elliptic problem and a fourth‐order parabolic problem solved by mixed finite element methods on quasi‐uniform rectangular meshes. Optimal convergence is proved for all continuous tensor product elements of order k ≥ 1. A numerical example is provided for solving the fourth‐order elliptic problem using the bilinear element. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

19.
Gracia  J. L.  O’Riordan  E. 《Numerical Algorithms》2021,88(4):1851-1873

A singularly perturbed parabolic problem of convection-diffusion type with a discontinuous initial condition is examined. An analytic function is identified which matches the discontinuity in the initial condition and also satisfies the homogenous parabolic differential equation associated with the problem. The difference between this analytical function and the solution of the parabolic problem is approximated numerically, using an upwind finite difference operator combined with an appropriate layer-adapted mesh. The numerical method is shown to be parameter-uniform. Numerical results are presented to illustrate the theoretical error bounds established in the paper.

  相似文献   

20.
Numerical approximations to the solution of a singularly perturbed elliptic convection–diffusion problem in two space dimensions are generated using a monotone finite difference operator on a tensor product of piecewise‐uniform Shishkin meshes. The bilinear interpolants of these numerical approximations are parameter‐uniformly convergent to the solution of the continuous problem, in the pointwise maximum norm. In this article, discrete approximations to the first derivatives of the solution are shown to be globally first‐order (up to logarithmic factors) uniformly convergent, when the errors are scaled within the analytical layers of the continuous problem. Numerical results are presented to illustrate the theoretical error bounds established in an appropriated weighted C1–norm. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 225–252, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号