首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2H NMR spectra of dimethylsulfone were measured with noise excitation and solid echo NMR spectroscopy in the temperature range from 125 to 355 K. Besides the known fact that broad NMR spectra can be measured with both methods, in comparable times it is shown that for noise excitation, the signal loss is negligible compared to echo spectroscopy in the regime when the correlation times of the motions are of the order of magnitude of the echo pulse spacing. For simulating the dynamic NMR spectra acquired with noise excitation, only the motional process must be taken into account and relaxation can be neglected. Furthermore, the problem of restricted acquisition bandwidth in noise NMR spectroscopy is discussed.  相似文献   

2.
Free induction decay (FID) signals in solid state NMR measurements performed with magic angle spinning can often be extended in time by factors on the order of 10 by a simple pulsed spin locking technique. The sensitivity of a structural measurement in which the structural information is contained in the dependence of the integrated FID amplitude on a preceding evolution period can therefore be enhanced substantially by pulsed spin locking in the signal detection period. We demonstrate sensitivity enhancements in a variety of solid state NMR techniques that are applicable to selectively isotopically labeled samples, including 13C-15N rotational echo double resonance (REDOR), 13C-13C dipolar recoupling measurements using the constant-time finite-pulse radio-frequency-driven recoupling (fpRFDR-CT) and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) techniques, and torsion angle measurements using the double quantum chemical shift anisotropy (DQCSA) technique. Further, we demonstrate that the structural information in the solid state NMR data is not distorted by pulsed spin locking in the detection period.  相似文献   

3.
阿达玛变换应用到核磁共振成象技术中,能提高成象技术的灵敏度。本文阐述了阿达玛变换在线扫描核磁共振成象中应用原理,推出了合成的激发信号相位与阿达玛编码关系。得到频率合成的激发信号相位表,据该表合成的激发信号产生多个自旋回波,能使核磁共振成象技术速度快、灵敏度高。文中还对该方法作了深入的讨论。  相似文献   

4.
A method of solid-state NMR imaging that permits echo Fourier transformation (FT) has been devised using a magic echo train. The echo FT imaging can be implemented simply by modifying the gradient pulse sequence in the previous magic echo imaging (TREV-16TS) so that the one-dimensional k-space trajectory follows the sampling points which are symmetric about the k origin. The implemented ability of echo FT improves the performance of the magic echo imaging: the sensitivity gained by radical2, the phase correction is made unnecessary, and the digital resolution is doubled. One- and two-dimensional imaging experiments have been conducted on some solid samples, confirming the improved performance and revealing a TREV-16TS adjustment parameter that is critical for the successful echo FT imaging.  相似文献   

5.
分析了不同物理条件下铁磁材料中核磁共振效应的激发、自旋回波讯号的形成和接收过程并进行了实验验证。所得结果合理地说明了实验条件对铁磁体核磁共振测量的影响,也指出了改进自旋回波接收方法的途径。  相似文献   

6.
二维核磁共振技术能够对储层中各类含氢流体进行无损、快速、定量的测量和表征,但受限于采集方式和参数,核磁共振设备在对页岩油等致密储层中的有机质、沥青等超快弛豫组分进行检测时,经常出现由于信号采集不完整所导致的二维谱中流体组分缺失或不准的问题.本文提出了基于超快弛豫组分补偿技术的T2-T1二维谱高精度反演方法,该方法将一维核磁共振前端信号补偿技术进行推广,通过在二维核磁数据反演前对回波数据进行组分补偿,能够有效解决二维核磁共振测井前端信号漏失的问题.实验及测井数据的应用表明,该方法在页岩油等富含快弛豫组分信号的储层中,可以得到更加精准和完整的储层信息.  相似文献   

7.
The results are presented of experimental and theoretical study of the phenomenon of secondary nuclear spin echo in magnetically ordered materials in which the formation of additional echo signals is due to dynamic hyperfine coupling. Numerical simulation of the effect of the amplitude (ω1) and the durations of the first (t1) and the second (t2) exciting pulses on the echo signals is performed. It is found that the maximum amplitude of the secondary echo is formed under the conditions ω1t1 = 0.5π and ω1t2 ≈ 0.6π. It is shown that secondary echo signals can be observed upon inhomogeneous excitation of the spectral line ω1 ≤ Δω, where Δω is the inhomogeneous spectral line width. At a temperature of T = 4.2 K, additional double-pulse spin 3τ-echo signals from iron nuclei are experimentally observed in an epitaxial yttrium ferrite garnet film enriched with 57Fe magnetic isotope to 96%. The experimentally observed phase relationships between the primary and secondary echo signals, as well as the dependence of the echo signal amplitude on the amplitude and duration of the exciting pulses, are in good agreement with the results of numerical simulation of the dynamics of nuclear magnetization with regard to the dynamic hyperfine coupling. It is shown that the secondary echo exhibits the effect of spectral line narrowing, and the amplitude of the secondary echo is proportional to the nuclear magnetic resonance (NMR) enhancement factor in magnets, η. In the case of 57Fe NMR in an yttrium iron garnet (YIG) film, the amplitude of the 3τ-echo is two to three orders of magnitude smaller than the amplitude of the primary 2τ-echo, which corresponds to η ≈ 440. The detection of weak secondary echo signals proves to be possible due to the use of a phase-coherent NMR spectrometer with digital quadrature detection at the carrier frequency and signal accumulation.  相似文献   

8.
The temperature dependences of nuclear magnetization and relaxation rates are reviewed theoretically and experimentally in order to quantify the effects of temperature on NMR signals acquired by common imaging techniques. Using common sequences, the temperature dependences of the equilibrium nuclear magnetization and relaxation times must each be considered to fully understand the effects of temperature on NMR images. The temperature dependence of the equilibrium nuclear magnetization is negative because of Boltzmann's distribution for all substances at all temperatures, but the combined temperature dependences of the equilibrium magnetization and relaxation can be negative, weak or positive depending on the temperature (T), echo time (T(E)), repetition time (T(R)), and the temperature dependences of the relaxation times T(1)(T) and T(2)(T) in a pulse sequence. As a result, the magnitude of the NMR signal from a given substance can decrease, increase or stay somewhat constant with increasing temperature. Nuclear thermal coefficients are defined and predictions for spin echo and other simple sequences are verified experimentally using a number of substances representing various thermal and NMR properties.  相似文献   

9.
An NMR flow quantification technique applicable to metabolite flow in plants is presented. It combines flow sensitive magnetization preparation with slice selective spectroscopy. Flow encoded NMR spectroscopy is described to quantify, for the first time, flow velocities of metabolites in plants non-invasively. Flow sensitivity is introduced by magnetization preparation based on a stimulated echo experiment, prior to slice selective spectroscopy. For flow quantification eight different flow-weighted spectra are collected. With this flow preparation very slow flow velocities down to 0.1mm/s can be detected and small amounts of flowing metabolites can be observed despite the large background signal of stationary and flowing water. Important sequence optimization steps include appropriate choice of experimental parameters used for flow encoding as well as complete balancing of eddy currents from the flow encoding gradients. The method was validated in phantom experiments and applied in vivo. Examples of quantitative flow measurements of water and metabolites in phantoms and plants are provided to demonstrate the reliability and the performance of flow encoded spectroscopy.  相似文献   

10.
Spin echo NMR signals in magnetic materials (simple metals, alloys or intermetallic compounds) generally result from mixed contributions of distinct magnetic regions of the sample, the magnetic domains and the domain walls. The amplitude of the signal is proportional to the so-called enhancement factor which in most of the cases greatly differs in these two regions, depending upon the wall mobility, the magnetic anisotropy, etc. The experimental access to domain and domain walls is possible, in principle, by a careful control of the RF power applied to the sample. In this paper a simple superposition model is proposed which includes both contributions to the NMR signal. We calculate the amplitude of the spin echo in magnetic powder samples and compare it with experimental situations where it has been possible to separate different contributions to the signal. This has been done in some RCo2 magnetic rare-earth intermetallic compounds by analyzing the spectral line widths and the curve of the spin echo amplitude versus the applied RF field. Despite its simplicity, the present model allows the understanding of the main features of the NMR spectra and the dependence of the echo amplitude with the RF power in these compounds.  相似文献   

11.
Nutation echoes are generated by radiofrequency (RF) pulses with an inhomogeneous amplitude, B(1) = B(1)(r), in inhomogeneous magnetic fields, B(0) = B(0)(r). The two gradients of strengths G(1) and G(0), respectively, must be aligned in parallel for a maximum echo signal. After two RF pulses, two echoes appear at times tau(a) = 2 tau(1) + tau(2) + (G(1)/G(0))tau(1) and tau(b) = 2 tau(1) + tau(2) + 2(G(1)/G(0))tau(1), where tau(1) is the RF pulse duration and tau(2) the interpulse interval. It is shown that these echoes can favorably be employed for the determination of self-diffusion coefficients even in the poor experimental situation one often faces in low-resolution or low-field NMR. The signal intensity is comparable to that of ordinary Hahn echoes. Diffusion coefficients and spin-lattice relaxation times can be evaluated from the same experimental data set if both nutation echoes are recorded. Test experiments are in good agreement with literature data. Applications of the technique to "inside out" NMR, well logging NMR, surface coil NMR, toroid cavity NMR, etc., are suggested.  相似文献   

12.
The application of echo planar imaging to NMR microscopy offers a temporal resolution unparalleled by other techniques. However, a major difficulty in imaging at the high field strengths used for microscopy is the effect of local field inhomogeneities caused by magnetic susceptibility effects. This can give rise to both image distortion and signal loss. In addition, the effect of diffusion in the presence of the large imaging gradients gives rise to a broadening of the point spread function and hence loss of true resolution. We compare the sensitivity of two techniques, MBEST and PEPI, to both of these effects. Analytic expressions for the signal in each echo of the two sequences are developed, and the point spread functions for the two techniques are calculated. Using PEPI, we have been able to produce images with an in-plane resolution of 50 micrometer from a single free induction decay. This technique has been extended to three dimensions allowing the generation of 64(3) images with an isotropic resolution of 80 micrometer.  相似文献   

13.
A suitably matched combination of unidirectional gradient pulses of the radio frequency amplitude B(1) and of the main magnetic field B(0) produces an unconventional type of spin echo, the nutation echo. The echo signal becomes volume selective if the gradients to be matched are inhomogeneously distributed in space. An example is a combination of a constant B(0) gradient and the inhomogeneous B(1) gradient of a surface coil. We suggest a method for localized NMR on this basis. Nutation echoes can also be used to map the spatial distribution of B(1) gradients of an arbitrary radio frequency coil geometry with the aid of a small probe sample. Copyright 2000 Academic Press.  相似文献   

14.
王峰  辛瑞平  廖红波 《物理实验》2012,(3):29-32,36
基于核磁共振的经典理论——Bloch方程,运用Matlab程序对核磁共振实验的各个环节(观察核磁共振信号、自由衰减信号、自旋回波信号等)进行了可视化模拟,帮助学生认识和理解核磁共振,辅助实验教学.  相似文献   

15.
The radiofrequency pulses used in NMR are subject to a number of imperfections such as those caused by inhomogeneity of the radiofrequency (B(1)) field and an offset of the transmitter frequency from precise resonance. The effect of these pulse imperfections upon a refocusing pulse in a spin-echo experiment can be severe. Many of the worst effects, those that distort the phase of the spin echo, can be removed completely by selecting the echo coherence pathway using either the "Exorcycle" phase cycle or magnetic field gradients. It is then tempting to go further and try to improve the amplitude of the spin-echo signal by replacing the simple refocusing pulse with a broadband composite 180° pulse that compensates for the relevant pulse imperfection. We show here that all composite pulses with a symmetric or asymmetric phase shift scheme will reintroduce phase distortions into the spin echo, despite the selection of the echo coherence pathway. In contrast, all antisymmetric composite pulses yield no phase distortion whatsoever, both on and off resonance, and are therefore the correct symmetry of composite refocusing pulse to use. These conclusions are verified using simulations and (31)P MAS NMR spin-echo experiments performed on a microporous aluminophosphate.  相似文献   

16.
High Resolution Diffusion-ordered Spectroscopy (HR-DOSY) is a valuable tool for mixture analysis by NMR. It separates the signals from different components according to their diffusion behavior, and can provide exquisite diffusion resolution when there is no signal overlap. In HR-DOSY experiments on (1)H (by far the most common nucleus used for DOSY) there is frequent signal overlap that confuses interpretation. In contrast, a (13)C spectrum usually has little overlap, and is in this respect a much better option for a DOSY experiment. The low signal-to-noise ratio is a critical limiting factor, but with recent technical advances such as cryogenic probes this problem is now less acute. The most widely-used pulse sequences for (13)C DOSY perform diffusion encoding with (1)H, using a stimulated echo in which half of the signal is lost. This signal loss can be avoided by encoding diffusion with (13)C in a spin echo experiment such as the DEPTSE pulse sequence described here.  相似文献   

17.
Spurious signals such as the piezoelectric signal from a ferroelectric crystal or the ringing signal from the NMR probe head tuned for low gyromagnetic ratio nuclei are often observed in pulsed NMR. Both signals are cancelled using the Hahn echo sequence with appropriate phase cyclings. The present paper applies a composite-pulse sequence to cancel the ringing signal. The main advantage of this sequence over the Hahn echo sequence is in the simplicity of optimizing the line intensity: the optimization of only one pulse duration for this sequence but of two pulse durations and the interpulse delay for the Hahn echo sequence. We are interested in half-integer quadrupole spins (I = 3/2, 5/2, 7/2, and 9/2), which means that we must consider the first-order quadrupole interaction during the pulses. For simplicity, we deal mainly with spin I = 3/2 nuclei. Since the central-line intensity depends on the ratio of the quadrupole coupling constant (QCC) to the amplitude of the RF pulse, we can determine the QCC from a featureless lineshape by fitting the variation of the experimental central-line intensity for increasing pulse duration with theoretical results. Contrary to the one-pulse sequence where the central-line intensity is proportional to the pulse duration if the latter is short, there is no such condition with the composite-pulse sequence. In other words, this sequence does not allow us to quantify the relative spin populations in powders. The size of the sample must be much smaller than that of the RF coil in order for the RF magnetic field to become homogeneous for the sample. We used (87)Rb (I = 3/2) in an aqueous solution of RbCl and in RbNb2O5F powder, (131)Xe (I = 3/2) of xenon gas physisorbed in Na-Y zeolite, and (23)Na (I = 3/2) in two well-known powders (NaNO3 and NaNO2) to support our theoretical result.  相似文献   

18.
Multiple echoes in the envelope of the nuclear quadrupole resonance (NQR) signal were obtained in a field of multipulse sequences in powdered nitrogen-containing materials at room temperature. Echo signals were observed over a wide range of pulse rotation angles. It is shown that an analogue of the magic NMR echo can be obtained in the field of multipulse sequence.  相似文献   

19.
张子静  吴龙  宋杰  赵远 《中国物理 B》2017,26(10):104207-104207
Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conventional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation(MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments.  相似文献   

20.
The signal obtained with q-space NMR imaging applied to a confined liquid is directly related to the pore shape in the limit where all molecules have sampled the whole pore. We investigate the diffusion of water across a approximately 50 microm thick film formed between planes of glass. The diffusion time t is changed almost three orders of magnitude. For short t, the root-mean-square displacement increases with a rate which is slightly less than for freely diffusing water. At t longer than 0.3 s, the displacement is constant at 24 microm which implies that the water is confined in the measuring direction defined by the applied gradient pulses. Perfectly smooth and aligned planes give rise to sharp diffraction-like features on the echo attenuation curve, i.e., NMR signal vs. the reciprocal space vector q. The experimental data with rather smooth local minima and maxima can be explained in terms of either surface roughness or a misalignment of the planes. We discuss the averaging effect of diffusion along a laterally inhomogeneous film and propose two model-free methods to determine the pore shape from the echo attenuation curve obtained in the long-t limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号