首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approach to the active damping of the forced resonant vibrations of orthotropic thermoviscoelastic plates with distributed sensors and actuators is proposed. The mechanical load is assumed unknown and is determined from the sensors’ indications. The problem of active damping of an isotropic thermoviscoelastic rectangular plate with hinged edges is solved as an example. A formula for the voltage to be applied to the actuator to damp the forced vibrations in the first mode is derived. The effect of the dimensions of the sensor and actuator and the dissipative properties of the materials on the effectiveness of active damping is studied  相似文献   

2.
The active damping of the resonant vibrations of a hinged flexible viscoelastic rectangular plate with distributed piezoelectric sensors and actuators is considered. It is shown that it is possible to considerably decrease the amplitude of resonant vibrations by choosing the appropriate feedback factor. The collective effect of geometrical nonlinearity and dissipative properties of the material on the effectiveness of active damping of the resonance vibrations of rectangular plates with sensors and actuators is analyzed  相似文献   

3.
The basic equations of the theory of thermoviscoelastic thin-walled plates with piezoelectric sensors and actuators under monoharmonic mechanical and electric loading are derived using the Kirchhoff–Love hypotheses. The thermomechanical behavior of passive and piezoactive materials is described using the concept of complex characteristics. Methods of solving nonlinear problems of active damping of thermomechanical vibrations of plates with sensors and actuators are considered. The effect of dissipative heating on the damping of axisymmetric vibrations of a thermoviscoelastic solid circular plate is analyzed as an example  相似文献   

4.
The basic equations for thin-walled thermoviscoelastic plates with distributed piezoelectric actuators under monoharmonic mechanical and electric loads are derived. The thermomechanical behavior of materials is described using the concept of complex characteristics. Variational methods of solving nonlinear problems of active damping of the bending vibrations of plates are considered. The effect of dissipative heating on the damping of the axisymmetric bending vibrations of a circular plate is examined as an example Translated from Prikladnaya Mekhanika, Vol. 45, No. 2, pp. 107–123, February 2009.  相似文献   

5.
The paper discusses the active damping of the resonant flexural vibrations of a clamped thermoviscoelastic rectangular plate with distributed piezoelectric sensors and actuators. The thermoviscoelastic behavior of the passive and active materials is described using the concept of complex characteristics. The interaction of the mechanical and thermal fields is taken into account. The Bubnov–Galerkin method is used. The effect of self-heating, the dimensions of the piezoelectric inclusions, and the feedback factor on the effectiveness of active damping of the resonance vibrations of the plate is studied  相似文献   

6.
The paper discusses the active damping of the resonant flexural vibrations of a hinged thermoviscoelastic rectangular plate with distributed piezoelectric sensors and actuators. The thermoviscoelastic behavior of the passive and active materials is described using the concept of complex characteristics. The interaction of mechanical and thermal fields is taken into account. The Bubnov–Galerkin method is used. The effect of dissipative heating, the dimensions of the piezoelectric inclusions, and the feedback factor on the effectiveness of active damping of resonance vibrations of the plate is studied  相似文献   

7.
Theoretical and experimental non-linear vibrations of thin rectangular plates and curved panels subjected to out-of-plane harmonic excitation are investigated. Experiments have been performed on isotropic and laminated sandwich plates and panels with supported and free boundary conditions. A sophisticated measuring technique has been developed to characterize the non-linear behavior experimentally by using a Laser Doppler Vibrometer and a stepped-sine testing procedure. The theoretical approach is based on Donnell's non-linear shell theory (since the tested plates are very thin) but retaining in-plane inertia, taking into account the effect of geometric imperfections. A unified energy approach has been utilized to obtain the discretized non-linear equations of motion by using the linear natural modes of vibration. Moreover, a pseudo arc-length continuation and collocation scheme has been used to obtain the periodic solutions and perform bifurcation analysis. Comparisons between numerical simulations and the experiments show good qualitative and quantitative agreement. It is found that, in order to simulate large-amplitude vibrations, a damping value much larger than the linear modal damping should be considered. This indicates a very large and non-linear increase of damping with the increase of the excitation and vibration amplitude for plates and curved panels with different shape, boundary conditions and materials.  相似文献   

8.
Vibrations and the damping behaviour of thin constrained composite plates with double piezoelectric layers are analytically explored by using Fourier transformation and classical laminated plate theory. Electric potential equations in the double piezoelectric layers are solved with respect to closed and open circuit boundary conditions, an exterior dielectric slab and active control. The natural frequencies and loss factors of the constrained smart composite plates with passive control methods are not notably changed in comparison with those of the constrained composite plates without piezoelectric effects since vibrational energy does not efficiently convert to electrical energy. The loss factors of the composite plates with active constrained damping increase and the natural frequencies have significant variations as the proportional derivative gains increase. Transverse displacement power spectra of the piezoelectric composite plates with active control are compared with those of the piezoelectric composite plates with passive control showing that active control has the best suppression performance of vibrations for the constrained laminated plates with double piezoelectric layers. Radial power spectral density, phase angles and cylindrical-wave power spectral density are calculated. Interesting patterns of wave propagation are explained when plane wave expansion is used to obtain Bessel cylindrical waves.  相似文献   

9.
The coupled problem of the forced axisymmetric vibrations and self-heating of electrothermoviscoelastic cylindrical shells with piezoceramic actuators under monoharmonic electromechanical loading is solved. The temperature dependence of the complex characteristics of the passive and piezoactive materials is taken into account. The coupled nonlinear problem of electrothermoelasticity is solved by using a time-marching method with discrete orthogonalization at each time step (to integrate the equations of elasticity) and an explicit finite-difference method (to solve the heat-conduction equations). An analysis is made of the effect of the boundary conditions at the shell ends, the dimensions of the piezoactuator, and the self-heating temperature on the actuator voltage and the effectiveness of active damping of the forced vibrations of the shell under uniform transverse monoharmonic pressure  相似文献   

10.
The active damping of the resonant vibrations of a flexible cylindrical panel with rectangular planform and clamped edges is considered. The damping is done with distributed piezoelectric sensors and actuators. It is shown that the amplitude of the resonant vibrations can be substantially decreased by choosing the appropriate feedback factors. The combined effect of geometrical nonlinearity and dissipative properties of the material on the effectiveness of damping is analyzed  相似文献   

11.
The effect of boundary condition nonlinearities on free nonlinear vibrations of thin rectangular plates is analyzed. The method for analysis of the plate vibrations with geometrical nonlinearity and the boundary condition nonlinearity is suggested. The nonlinear boundary conditions for membrane forces are transformed into linear ones using the in-plane stress function. Additional boundary conditions for the in-plane displacements vanishing on the clamped edge of the plate are imposed on the stress function. Simply supported and cantilever plates are analyzed. The backbone curves obtained by satisfying linear and nonlinear boundary conditions are compared. It is shown that the results of the calculations with nonlinear boundary conditions differ essentially from the data obtained without these boundary conditions.  相似文献   

12.
An analytical solution for the cylindrical bending vibrations of linear piezoelectric laminated plates is obtained by extending the Stroh formalism to the generalized plane strain vibrations of piezoelectric materials. The laminated plate consists of homogeneous elastic or piezoelectric laminae of arbitrary thickness and width. Fourier basis functions for the mechanical displacements and electric potential that identically satisfy the equations of motion and the charge equation of electrostatics are used to solve boundary value problems via the superposition principle. The coefficients in the infinite series solution are determined from the boundary conditions at the edges and continuity conditions at the interfaces between laminae, which are satisfied in the sense of Fourier series. The formulation admits different boundary conditions at the edges of the laminated piezoelectric composite plate. Results for laminated elastic plates with either distributed or segmented piezoelectric actuators are presented for different sets of boundary conditions at the edges.  相似文献   

13.
In this paper, the large amplitude forced vibrations of thin rectangular plates made of different types of rubbers are investigated both experimentally and theoretically. The excitation is provided by a concentrated transversal harmonic load. Clamped boundary conditions at the edges are considered, while rotary inertia, geometric imperfections and shear deformation are neglected since they are negligible for the studied cases. The von Kármán nonlinear strain-displacement relationships are used in the theoretical study; the viscoelastic behaviour of the material is modelled using the Kelvin-Voigt model, which introduces nonlinear damping. An equivalent viscous damping model has also been created for comparison. In-plane pre-loads applied during the assembly of the plate to the frame are taken into account. In the experimental study, two rubber plates with different material and thicknesses have been considered; a silicone plate and a neoprene plate. The plates have been fixed to a heavy rectangular metal frame with an initial stretching. The large amplitude vibrations of the plates in the spectral neighbourhood of the first resonance have been measured at various harmonic force levels. A laser Doppler vibrometer has been used to measure the plate response. Maximum vibration amplitude larger than three times the thickness of the plate has been achieved, corresponding to a hardening type nonlinear response. Experimental frequency-response curves have been very satisfactorily compared to numerical results. Results show that the identified retardation time increases when the excitation level is increased, similar to the equivalent viscous damping but to a lesser extent due to its nonlinear nature. The nonlinearity introduced by the Kelvin-Voigt viscoelasticity model is found to be not sufficient to capture the dissipation present in the rubber plates during large amplitude vibrations.  相似文献   

14.
The forced monoharmonic vibrations and self-heating of a circular thermoviscoelastic plate with piezoelectric sensor and actuator are studied. The viscoelastic behavior of the passive (without piezoeffect) and piezoactive materials is described using the concept of complex moduli. The problems of electroelasticity and heat conduction are solved numerically, assuming that the mechanical load is unknown. The effect of self-heating on the active damping of the vibrations of the plate is analyzed  相似文献   

15.
The paper deals with the coupled problem of flexural vibrations and dissipative heating of a viscoelastic ring plate with piezoceramic actuators under monoharmonic electromechanical loading. The temperature dependence of the complex characteristics of passive and piezoactive materials is taken into account. The coupled nonlinear problem of thermoviscoelasticity is solved by an iterative method. At each iteration, orthogonal discretization is used to integrate the equations of elasticity and an explicit finite-difference scheme is used to solve the heat-conduction equation with a nonlinear heat source. The effect of the dissipative heating temperature, boundary conditions, and the thickness and area of the actuator on the active damping of the forced vibrations of the plate under uniform transverse harmonic pressure is examined __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 99–108, February 2008.  相似文献   

16.
IntroductionTheconventionalpassiveconstrainedlayerdamping(PCLD)treatmentshavebeenextensivelyutilizedasasimpleandreliablemeansfordampingoutthevibrationofvariousstructures(MeadandMarkus1969[1],Y.K.Cheung1972[2],JohnsonandKienholz1982[3],CupialandNiziol…  相似文献   

17.
The combined flutter and divergence instability of plates of arbitrary geometry subjected to any type of boundary conditions under interior and edge conservative and nonconservative loads are solved in presence of external and internal damping. In contrast to previous investigations, the membrane stress resultants are not in general uniform, since they result from plane stress problem under the given body forces (conservative and nonconservative) and the prescribed inplane boundary conditions. The differential equations of the problem are derived using Hamilton’s principle. The resulted initial boundary value problem is solved using the analog equation method (AEM), which is a BEM-based domain meshless method. The combined action of conservative and nonconservative forces is also investigated. Several plates have been studied and useful conclusions on the effect of boundary conditions and damping on flutter load have been drawn. The obtained numerical results demonstrate the accuracy of the developed method and its capability to solve realistic engineering problems.  相似文献   

18.
The natural vibrations of anisotropic rectangular plates of varying thickness with complex boundary conditions are studied using the spline-collocation and discrete-orthogonalization methods. The basic principles of the approach are outlined. The natural vibrations of orthotropic plates with parabolically varying thickness are calculated. The results (natural frequencies and modes) obtained with different boundary conditions are analyzed __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 10, pp. 90–99, October 2005.  相似文献   

19.
This work deals with the active control of the vibrations of mechanical structures incorporating magnetorheological elastomer. The damping coefficient and shear modulus of the elastomer increase when exposed to a magnetic field. Compared with the vibration control where the elastomer is permanently exposed to a magnetic field, the control of this process through time reduces vibrations more effectively. The experimental study for the vibrations of a sandwich beam filled with an elastomer is conducted, followed by a numerical study using the Abaqus code.The vibration damping is found to be dependent on the loading rate of micro-size ferromagnetic particles in the elastomer.  相似文献   

20.
The paper proposes a method to study the parametric vibrations of orthotropic plates with complex shape. The method is based on the R-function theory and variational methods. Dynamic-instability domains and amplitude–frequency responses for plates with complex geometry and different types of boundary conditions are plotted  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号