首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) is a new technology for ion separation at atmospheric pressure. This review introduces the reader to FAIMS, covering topics ranging from the fundamentals and extraction of physical parameters from the raw data, to applications of FAIMS extending from homeland security to environmental analysis to proteomics. The investigation of FAIMS as an ion pre-processing tool for mass spectrometry is in its infancy, but reports in the literature illustrate that FAIMS separates isobaric ions including diastereoisomers, separates isotopes, reduces background ions by isolating ions of interest, and simplifies spectra of complex mixtures by dividing the mixture into a series of simpler subsets of ions. Applications ranging from quantitative analysis of inorganic and organometallic compounds, to studies of the conformers of intact proteins, have been reported. This review is a launching point for further exploration of FAIMS.  相似文献   

2.
3.
Kolakowski BM  Mester Z 《The Analyst》2007,132(9):842-864
High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility Spectrometry (DMS) harness differences in ion mobility in low and high electric fields to achieve a gas-phase separation of ions at atmospheric pressure. This separation is orthogonal to either chromatographic or mass spectrometric separation, thereby increasing the selectivity and specificity of analysis. The orthogonality of separation, which in some cases may obviate chromatographic separation, can be used to differentiate isomers, to reduce background, to resolve isobaric species, and to improve signal-to-noise ratios by selective ion transmission. This review will focus on the applications of these techniques to the separation of various classes of analytes, including chemical weapons, explosives, biologically active molecules, pharmaceuticals and pollutants. These papers cover the period up to January 2007.  相似文献   

4.
A new instrument that combines ion mobility spectrometry (IMS) separations with tandem mass spectrometry (MS(n)) is described. Ion fragmentation is achieved with vacuum ultraviolet photodissociation (VUV PD) and/or collision-induced dissociation (CID). The instrument is comprised of an approximately 1 m long drift tube connected to a linear trap that has been interfaced to a pulsed F(2) laser (157 nm). Ion gates positioned in the front and the back of the primary drift region allow for mobility selection of specific ions prior to their storage in the ion trap, mass analysis, and fragmentation. The ion characterization advantages of the new instrument are demonstrated with the analysis of the isomeric trisaccharides, melezitose and raffinose. Mobility separation of precursor ions provides a means of separating the isomers and subsequent VUV PD generates unique fragments allowing them to be distinguished.  相似文献   

5.
A simple device is described for desolvation of highly charged matrix/analyte clusters produced by laser ablation leading to multiply charged ions that are analyzed by ion mobility spectrometry-mass spectrometry. Thus, for example, highly charged ions of ubiquitin and lysozyme are cleanly separated in the gas phase according to size and mass (shape and molecular weight) as well as charge using Tri-Wave ion mobility technology coupled to mass spectrometry. This contribution confirms the mechanistic argument that desolvation is necessary to produce multiply charged matrix-assisted laser desorption/ionization (MALDI) ions and points to how these ions can be routinely formed on any atmospheric pressure mass spectrometer.  相似文献   

6.
Normal and cyclic alkanes and alkenes form stable gas-phase ions in air at atmospheric pressure from 40 to 200°C when moisture is below 1 ppm. Ionization of alkanes in a 63Ni source favored charge transfer over proton transfer through pathways involving [M?1]+ and [M?3]+ ions. Ion mobility spectra for alkanes showed sharp and symmetrical profiles while spectra for alkenes suggested fragmentation. Ion identifications were made by using mass spectrometry, and ionization pathways were supported by using deuterated analogs of alkanes and alkenes. Alkanes were ionized seemingly through a hydrogen abstraction pathway and did not proceed through an alkene intermediate. New methods for interpretation of mobility spectra utilizing ion mobility spectrometry, atmospheric pressure chemical ionization mass spectrometry, chemical ionization mass spectrometry, and ion mobility spectrometry-mass spectrometry data were demonstrated.  相似文献   

7.
Ionized acetates were used as model compounds to describe gas-phase behavior of oxygen containing compounds with respect to their formation of dimers in ion mobility spectrometry (IMS). The ions were created using corona discharge at atmospheric pressure and separated in a drift tube before analysis of the ions by mass spectrometry. At the ambient operational temperature and pressure used in our instrument, all acetates studied formed dimers. Using a homolog series of n-alkyl-acetates, we found that the collision cross section of a dimer was smaller than that of a monomer with the same reduced mass. Our experiments also showed that the reduced mobility of acetate dimers with different functional groups increased in the order n-alkyl 相似文献   

8.
A number of carboxylate anions spanning a mass range of 87-253 amu (pyruvate, oxalate, malonate, maleate, succinate, malate, tartarate, glutarate, adipate, phthalate, citrate, gluconate, 1,2,4-benzenetricarboxylate, and 1,2,4,5-benzenetetracarboxylate) were investigated using electrospray ionization ion mobility spectrometry. Measured ion mobilities demonstrated a high correlation between mass and mobility in both N2 and CO2 drift gases. Such a strong mass-mobility correlation among structurally dissimilar ions suggests that the carboxylate functional group that these ions have in common is the source of the correlation. Computational analysis was performed to determine the most stable conformation of the studied carboxylate anions in the gas phase under the current experimental conditions. This analysis indicated that the most stable conformations for multicarboxylate anions included intramolecular hydrogen-bonded ring structures formed between the carboxylate group and the neutral carboxyl group. The carboxylate anions that form ring confirmations generally show higher ion mobility values than those that form extended conformations. This is the first observation of intramolecular hydrogen-bonded ring conformation of carboxylate anions in the gas phase at atmospheric pressure.  相似文献   

9.
The challenges posed by the analysis of mono‐nucleotide mixtures by direct infusion electrospray ionization were examined in the context of recent advances of mass spectrometry (MS) technologies. In particular, we evaluated the merits of high‐resolution mass analysis, multistep gas‐phase dissociation, and ion mobility determinations for the characterization of species with very similar or identical elemental composition. The high resolving power afforded by a linear trap quadrupole‐orbitrap allowed the complete differentiation of overlapping isotopic distributions produced by nucleotides that differed by a single mass unit. Resolving 12C signals from nearly overlapped 13C contributions provided the exact masses necessary to calculate matching elemental compositions for unambiguous formulae assignment. However, it was the ability to perform sequential steps of gas‐phase dissociation (i.e. MSn‐type analysis) that proved more valuable for discriminating between truly isobaric nucleotides, such as the AMP/dGMP and UMP/ΨMP couples, which were differentiated in the mixture from their unique fragmentation patterns. The identification of diagnostic fragments enabled the deconvolution of dissociation spectra containing the products of coexisting isobars that could not be individually isolated in the mass‐selection step. Approaches based on ion mobility spectrometry‐MS provided another dimension upon which isobaric nucleotides could be differentiated according to their distinctive mobility behaviors. Subtle structural variations, such as the different positions of an oxygen atom in AMP/dGMP or the glycosidic bond in UMP/ΨMP, produced detectable differences in the respective ion mobility profiles, which enabled the differentiation of the isobaric couples in the mixture. Parallel activation of all ions emerging from the ion mobility element provided an additional dimension for differentiating these analytes on the basis of both mobility and fragmentation properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
An ion mobility cell of a novel type was coupled to an orthogonal injection time-of-flight (TOF) mass spectrometer. The mobility cell operates at low-pressure and contains a segmented RF ion guide providing an axial electric field that drives the ions towards the exit. A flow of gas is arranged inside the ion guide in such a way that the gas drag counteracts the force exerted by the axial field. Ions with different mobility coefficients can be scanned out of the ion guide by ramping the axial field strength. The ions can be analyzed intact or fragmented in a collision cell before introduction into an orthogonal TOF mass spectrometer. An ion source with matrix assisted laser desorption/ionization (MALDI) was attached to the instrument. The setup was evaluated for the analysis of peptide and protein mixture, with sequential fragmentation of multiple precursor ions from a protein digest and with mobility separation of fragment ions formed by in-source fragmentation of pure peptides. The mobility resolution for peptides was observed to be three times higher than the theoretical resolution predicted for a classical mobility setup with similar operating conditions (pressure, field strength, and length).  相似文献   

11.
The combination of ion mobility with matrix-assisted laser desorption/ionization allows for the rapid separation and analysis of biomolecules in complex mixtures (such as tissue sections and cellular extracts), as isobaric lipid, peptide, and oligonucleotide molecular ions are pre-separated in the mobility cell before mass analysis. In this study, MALDI-IM MS is used to analyze gangliosides, a class of complex glycosphingolipids that has different degrees of sialylation. Both GD1a and GD1b, structural isomers, were studied to see the effects on gas-phase structure depending upon the localization of the sialic acids. A total ganglioside extract from mouse brain was also analyzed to measure the effectiveness of ion mobility to separate out the different ganglioside species in a complex mixture.  相似文献   

12.
A novel method is reported for rapid protein identification by the analysis of tryptic peptides using desorption electrospray ionisation (DESI) coupled with hyphenated ion mobility spectrometry and quadrupole time-of-flight mass spectrometry (IMS/Q-ToF-MS). Confident protein identification is demonstrated for the analysis of tryptically digested bovine serum albumin (BSA), with no sample pre-treatment or clean-up. Electrophoretic ion mobility separation of ions generated by DESI allowed examination of charge-state and mobility distributions for tryptic peptide mixtures. Selective interrogation of singly charged ions allowed isobaric peptide responses to be distinguished, along with a reduction in spectral noise. The mobility-selected singly charged peptide responses were presented as a pseudo-peptide mass fingerprint (p-PMF) for protein database searching. Comparative data are shown for electrospray ionisation (ESI) of the BSA digest, without sample clean-up, from which confident protein identification could not be made. Implications for the robustness of the DESI method, together with potential insights into mechanisms for DESI of proteolytic digests, are discussed.  相似文献   

13.
A pulsed triple ionization source, using a common atmosphere/vacuum interface and ion path, has been developed to generate different types of ions for sequential ion/ion reaction experiments in a linear ion trap-based tandem mass spectrometer. The triple ionization source typically consists of a nano-electrospray emitter for analyte formation and two other emitters, an electrospray emitter and an atmospheric pressure chemical ionization emitter or a second nano-electrospray emitter for formation of the two different reagent ions. The three emitters are positioned in a parallel fashion close to the sampling orifice of the tandem mass spectrometer. The potentials applied to each emitter are sequentially pulsed so that desired ions are generated separately in time and space. Sequential ion/ion reactions take place after analyte ions of interest and different set of reagent ions are sequentially injected into a linear ion trap, where axial trapping is effected by applying an auxiliary radio frequency voltage to the end lenses. The pulsed triple ionization source allows independent optimization of each emitter and can be readily coupled to any atmospheric pressure ionization interface with no need for instrument modifications, provided the potentials required to transmit the ion polarity of interest can be synchronized with the emitter potentials. Several sequential ion/ion reactions examples are demonstrated to illustrate the analytical usefulness of the triple ionization source in the study of gas-phase ion/ion chemistry.  相似文献   

14.
Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI) has proven a convenient and rapid method for ion production in the mass spectrometric analysis of biomolecules. This technique, like other atmospheric pressure ionization methods, suffers from ion loss during ion transmission from the atmosphere into the vacuum of the mass spectrometer. In this work, a simple model describing ion formation and ion motion towards the inlet capillary of the mass spectrometer is described. Both the gas flow and electric field near the MALDI plate were numerically calculated using the boundary element method (BEM). The ions were moving along with the gas flow and drifting in the electric field in accordance with their ion mobility properties. The ion signal dependence on an electric field strength obtained in the proposed model correlates well with experimental results.  相似文献   

15.
Recently, it has been shown that energy‐resolved mass spectrometry (MS) can provide quantitative information from two isomeric or isobaric compounds in mixtures by using the survival yield (SY) technique together with “gas‐phase collisional purification” (GPCP) strategy (Anal. Chem., 2016, 88, p.10821). Herein, we present an improvement and an extension of this concept to the structural analysis of a model mixture of three isobaric compounds (two peptides and a polyether). By using default collision‐induced dissociation (CID) tandem MS parameters on an ion trap instrument, the previous approach did not show any signs of isobaric contamination. However, by modifying CID conditions and using a threefold increase of the He trapping gas pressure (to reach 3.00·10?5 mbar), the SY curve was unexpectedly and strongly shifted to higher excitation voltages with two plateaus appearing. Those plateaus, indicating clearly the presence of three isobaric compounds, were taken as reliable indicators to perform GPCP at carefully selected excitation voltages in order to selectively fragment one compound after the other. In this way, CID mass spectra of each compound were correctly recovered, both in terms of fragment ion peaks and in terms of relative intensities, from energy‐resolved MSn spectra of the three compounds mixture. This feature enables their unequivocal structural analysis as if samples were free from isobaric interferences. In this paper, we also discuss the possibility for recovering SY curves for pure compounds directly from the mixture. Clearly, in this case, the higher He trapping gas pressure made it possible to use the SY technique, for the first time, for the structural analysis in the case of mixtures of three isobaric compounds. This observation, quite unexpected, demonstrates that the trapping gas pressure is of paramount importance although it is usually not considered in energy‐resolved MS for structural and/or quantitative analysis.  相似文献   

16.
A newly introduced high sensitivity laserspray (LSI) mass spectrometry (MS) method that uses laser ablation of a matrix/analyte mixture at atmospheric pressure (AP) to obtain multiply charged ions from nonvolatile as well as high-mass compounds is now implemented using a simple probe device. The probe used in the LSI approach was originally designed for sample introduction into an AP ionization source using the atmospheric solids analysis probe (ASAP) method. Multiply charged mass spectra of peptides and proteins in 2,5-dihydroxybenzoic acid matrix were readily obtained on two mass spectrometers from different manufacturers with sample introduction using melting point tubes. Here we demonstrate rapid analysis by placing four peptide and protein samples on a single melting point tube. Mass spectra were obtained at high-resolution and using ion mobility spectrometry/MS.  相似文献   

17.
Increasing the dimensionality of an analysis enables more detailed and comprehensive investigations of complex mixtures. One dimensional separation techniques like gas chromatography (GC) and ion mobility spectrometry (IMS) provide limited chemical information about complex mixtures. The combination of GC, ion mobility spectrometry, and time-of-flight mass spectrometry (GC-IM-TOFMS) provides three-dimensional separation of complex mixtures. In this work, a hybrid GC-IM-TOFMS with a secondary electrospray ionization (SESI) source provided four types of analytical information: GC retention time, ion mobility drift time, mass-to-charge ratios, and ion intensity. The use of secondary electrospray ionization enables efficient and soft ionization of gaseous sample vapors at atmospheric pressure. Several complex mixtures, including lavender and peppermint essential oils, were analyzed by GC-SESI-IM-TOFMS. The resulting 3D data from these mixtures, each containing greater than 50 components, were plotted as 3D projections. In particular, post-processed data plotted in three dimensions showed that many mass selected GC peaks were resolved into different ion mobility peaks. This technique shows clear promise for further in-depth analyses of complex chemical and biological mixtures.  相似文献   

18.
Laser-based ion mobility (IM) spectrometry was used for the detection of neuroleptics and PAH. A gas chromatograph was connected to the IM spectrometer in order to investigate compounds with low vapour pressure. The substances were ionized by resonant two-photon ionization at the wavelengths λ?=?213 and 266 nm and pulse energies between 50 and 300 μJ. Ion mobilities, linear ranges, limits of detection and response factors are reported. Limits of detection for the substances are in the range of 1–50 fmol. Additionally, the mechanism of laser ionization at atmospheric pressure was investigated. First, the primary product ions were determined by a laser-based time-of-flight mass spectrometer with effusive sample introduction. Then, a combination of a laser-based IM spectrometer and an ion trap mass spectrometer was developed and characterized to elucidate secondary ion–molecule reactions that can occur at atmospheric pressure. Some substances, namely naphthalene, anthracene, promazine and thioridazine, could be detected as primary ions (radical cations), while other substances, in particular acridine, phenothiazine and chlorprothixene, are detected as secondary ions (protonated molecules). The results are interpreted on the basis of quantum chemical calculations, and an ionization mechanism is proposed.  相似文献   

19.
High-field asymmetric waveform ion mobility spectrometry (FAIMS) separates ions at atmospheric pressure and room temperature based on the difference of the mobility of ions in strong electric fields and weak electric fields. This field-dependent mobility of an ion is reflected in the compensation voltage (CV) at which the ion is transmitted through FAIMS, at a given asymmetric waveform dispersion voltage (DV). Experimental CV, relative peak ion intensity, and peak width data were compared for three FAIMS prototypes with concentric cylindrical electrodes having inner/outer electrode radii of: (1) 0.4/0.6 cm, (2) 0.8/1.0 cm, and (3) 1.2/1.4 cm. The annular analyzer space was 0.2 cm wide in each case. A finite-difference numerical computation method is described for evaluation of peak shapes and widths in a CV spectrum collected using cylindrical geometry FAIMS devices. Simulation of the radial distribution of the ion density in the FAIMS analyzer is based upon calculation of diffusion, electric fields, and the electric fields introduced by coulombic ion-ion repulsion. Excellent agreement between experimental and calculated peak shapes were obtained for electrodes of wide diameter and for ions transmitted at low CV.  相似文献   

20.
Tandem mass spectrometry (MS/MS) of peptides plays a key role in the field of proteomics, and an understanding of the fragmentation mechanisms involved is vital for data interpretation. Not all the fragment ions observed by low-energy collision-induced dissociation of protonated peptides are readily explained by the generally accepted structures for a- and b-ions. The possibility of a macrocyclic structure for b-type ions has been recently proposed. In this study, we have undertaken investigations of linear protonated YAGFL-NH(2), N-acetylated-YAGFL-NH(2), and cyclo-(YAGFL) peptides and their fragments using a combination of ion mobility (IM) separation and mass spectrometry. The use of IM in this work both gives insight into relative structural forms of the ion species and crucial separation of isobaric species. Our study provides compelling evidence for the formation of a stable macrocyclic structure for the b(5) ion generated by fragmentation of protonated linear YAGFL-NH(2). Additionally we demonstrate that the a(4) ion fragment of protonated YAGFL-NH(2) has at least two structures; one of which is attributable to a macrocyclic structure on the basis of its subsequent fragmentation. More generally, this work emphasizes the value of combined IM-MS/MS in probing the detailed fragmentation mechanisms of peptide ions, and illustrates the use of combined ion mobility/collisional activation/mass spectrometry analysis in achieving an effective enhancement of the resolution of the mobility separator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号