首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Ru—N bond distances in the title complex, [Ru(NO2)(C11H9N3)(C15H11N3)]BF4 or [Ru(NO2)(tpy)(azpy)]BF4, [tpy is 2,2′:6′,2′′‐ter­pyridine and azpy is 2‐(phenyl­azo)­pyridine], are Ru—Npy 2.063 (4), Ru—Nazo 2.036 (4), Ru—Nnitro 2.066 (3) Å, and Ru—Ntpy 2.082 (4), 1.982 (3) and 2.074 (4) Å. The azo N atom is trans to the nitro group. The azo N=N bond length is 1.265 (5) Å, which is the shortest found in such complexes to date. This indicates a multiple bond between Ru and the N atom of the nitro group, and π‐­backbonding [dπ(Ru) π*(azo)] is decreased.  相似文献   

2.
The two new title complexes, [Cu(N3)(dpyam)2]PF6 (dpyam is di‐2‐pyridylamine, C10H11N3), (I), and [Cu(N3)(dpyam)2]Cl·4H2O, (II), respectively, have been characterized by single‐crystal X‐ray diffraction. Both complexes display a distorted square‐pyramidal geometry. Each Cu atom is coordinated in the basal plane by three dpyam N atoms and one azide N atom in equatorial positions, and by another N atom from the dpyam group in the apical position. In complex (I), the one‐dimensional supra­molecular architecture is assembled via hydrogen‐bonding inter­actions between the amine N atom and terminal azide N atoms and the F atoms of the PF6 anion. For complex (II), hydrogen‐bonding inter­actions between the amine N atom, the Cl anion and water O atoms result in a two‐dimensional lattice.  相似文献   

3.
Purple prismatic crystals of the title compound, [Co2(C3H6NS2)4(C8H11O2P)2](PF6)2, were obtained by repeated recrystallization of trans‐[Co(C3H6NS2)2‐(C8H11O2P)2]PF6 from CH3CN/Et2O and then from MeOH/CH2Cl2; during recrystallization one of the P(OMe)2Ph ligands was dissociated from the CoIII center and the resulting CoIII complex fragment underwent dimerization. The complex cation has a dinuclear structure bridged by one S atom of each of two of the N,N‐di­methyl­di­thio­carbamate ligands, and has crystallographically imposed C2 symmetry. Two P(OMe)2Ph ligands are coordinated at the transoid positions of the Co2(μ‐C3H6NS2)2(C3H6NS2)2 moiety, with Co—P bond lengths of 2.1921 (11) Å.  相似文献   

4.
Both coordination and hydrogen bonds contribute to networking in the supramolecular title compound, [Co(C6H6­NO3S)(C12H8N2)(H2O)3]Cl, which contains a discrete [Co(C6H6NO3S)(C12H8N2)(H2O)3]+ complex cation, formed by one 4‐amino­benzene­sulfonate ligand, one 1,10‐phenanthroline ligand and three coordinated water mol­ecules, together with one uncoordinated chloride anion. These discrete cations and chloride anions are connected by hydrogen‐bonding interactions into a two‐dimensional supramolecular motif. Further hydrogen‐bonding interactions consolidate the structural architecture and extend the two‐dimensional supramol­ecular structure into a three‐dimensional network.  相似文献   

5.
In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

6.
In the crystal structure of the title compound, bis­(2‐amino­pyrimidine‐κN1)bis­[6‐meth­yl‐1,2,3‐oxathia­zin‐4(3H)‐one 2,2‐dioxide(1−)‐κ2N3,O4]copper(II), [Cu(C4H4NO4S)2(C4H5N3)2], the first mixed‐ligand complex of acesulfame, the CuII centre resides on a centre of symmetry and has an octa­hedral geometry that is distorted both by the presence of four‐membered chelate rings and by the Jahn–Teller effect. The equatorial plane is formed by the N atoms of two amino­pyrimidine (ampym) ligands and by the weakly basic carbonyl O atoms of the acesulfamate ligands, while the more basic deprotonated N atoms of these ligands are in the elongated axial positions with a strong misdirected valence. The crystal is stabilized by pyrimidine ring stacking and by inter­molecular hydrogen bonding involving the NH2 moiety of the ampym ligand and the carbon­yl O atom of the acesulfamate moiety.  相似文献   

7.
The title PtII complexes, viz. (2,2′‐bi­pyridine‐κ2N,N′)[(1R,2R)‐1,2‐di­amino­cyclo­hexane‐κ2N,N′]­platinum(II) bis­(hexa­fluoro­phosphate), [Pt(C6H14N2)(C10H8N2)](PF6)2, and [(1R,2R)‐1,2‐di­amino­cyclo­hexane‐κ2N,N′](1,10‐phenanthroline‐κ2N,N′)platinum(II) bis­(hexa­fluoro­phosphate), [Pt(C6H14N2)(C12H8N2)](PF6)2, containing an aromatic α‐di­imine and a non‐planar di­amino­cyclo­hexane, both form a ladder‐type structure, which is constructed via loose π–π stacking on the α‐di­imine ligands and hydrogen bonding between the cyclic amines and the counter‐anions. In the former compound, there are two independent complex cations, both of which have a twofold axis through the Pt atom.  相似文献   

8.
The title complex, [Ru(C10H8N2S)2(CH3CN)2](BF4)2·H2O, is the product of the solvolysis of [Ru(dps‐N,N)2(dps‐N,S)](PF6)2 (dps is di‐2‐pyridyl sulfide) in the presence of HBF4 in acetone–aceto­nitrile at room temperature. There are two independent cations, with the Ru atoms on inversion centres; each Ru atom has an octahedral geometry with the dps mol­ecules behaving as N,N′‐bidentate ligands and assuming a trans arrangement.  相似文献   

9.
The title compound, [Zn(C15H11N7O4)(H2O)2](NO3)(PF6)·3H2O, contains a mononuclear zinc(II) complex. The Zn2+ centre is seven‐coordinated in a slightly distorted penta­gonal–bipyramidal geometry, with the two water O atoms located in the apical positions, and the pyridine N atom, the two imine N atoms and two carbonyl O atoms of the uracil groups located in the equatorial plane. The charge is balanced by PF6 and NO3 anions.  相似文献   

10.
The structure of the title compound, [PtCl2(C5H5N)(C2H6S)], consists of discrete mol­ecules in which the Pt‐atom coordination is slightly distorted square planar. The Cl atoms are trans to each other, with a Cl—Pt—Cl angle of 176.60 (7)°. The pyridine ligand is rotated 64.5 (2)° from the Pt square plane and one of the Pt—Cl bonds essentially bisects the C—S—C angle of the di­methyl sulfide ligand. In the crystal structure, there are extensive weak C—H⋯Cl interactions, the shortest of which connects mol­ecules into centrosymmetric dimers. A comparison of the structural trans influence on Pt—S and Pt—­N distances for PtS(CH3)2 and Pt(pyridine) fragments, respectively, in square‐planar PtII complexes is presented.  相似文献   

11.
In the title compound [systematic name: aqua(1,10‐phenanthroline‐κ2N,N′)(pyridine‐2,6‐di­carboxyl­ato‐κ3O2,N,O6)manganese(II) monohydrate, [Mn(C7H3NO4)(C12H8N2)(H2O)]·H2O, the manganese(II) centre is surrounded by one bidentate phenanthroline ligand [Mn—N = 2.248 (3) and 2.278 (3) Å], one tridentate dipicolinate ligand [Mn—N = 2.179 (3) Å, and Mn—O = 2.237 (2) and 2.266 (2) Å] and one water mol­ecule [Mn—O = 2.117 (3) Å], and it exhibits a strongly distorted octahedral geometry, with trans angles ranging from 144.12 (9) to 158.88 (11)°. Extensive intermolecular hydrogen‐bonding interactions involving coordinated and uncoordinated water mol­ecules and the carboxyl O atoms of the dipicolinate ligand, as well as a stacking interaction involving the phenanthroline rings, are observed in the crystal structure.  相似文献   

12.
In the title compound, [Cu(C4H6N2O3)(C8H8N2)]·3H2O, the CuII atom is coordinated in a square‐planar manner by one O atom and three N atoms from glycylglycinate and 2‐methyl­benzimidazole ligands. The ternary complexes assemble into one‐dimensional chains through C—H⋯π inter­actions and direct N—H⋯O hydrogen bonding, as well as into hydrogen‐bonded water helices with branches which also link the complex chains into a three‐dimensional supra­molecular structure.  相似文献   

13.
In the crystal structure of the title compound {systematic name: bis­[6‐methyl‐1,2,3‐oxa­thia­zin‐4(3H)‐one 2,2‐dioxide(1−)‐κ2N3,O4]bis­(3‐meth­yl­pyridine)copper(II)}, [Cu(C4H4NO4S)2(C6H7N)2], the CuII centre resides on a centre of symmetry and has an octa­hedral geometry that is distorted both by the presence of four‐membered chelate rings and because of the Jahn–Teller effect. The equatorial plane is formed by the N atoms of two methyl­pyridine ligands and by the more basic O atoms of the acesulfamate ligands, while the weakly basic N atoms of these ligands are in elongated axial positions with a misdirected valence. The crystal is stabilized by two inter­molecular C—H⋯O inter­actions involving the methyl and CH groups, and the sulfonyl O atoms of the acesulfamate group.  相似文献   

14.
The structure of the title compound, [Zn(C12­H11­N2­O2S)2(C10H8N2)], consists of monomeric mol­ecules in which the central ZnN2N′N′′ unit has a distorted tetrahedral geometry, with bond lengths ranging from 2.020 (3) to 2.109 (3) Å. The anionic ligands are potential bidentate donors and thus there are two secondary Zn—N interactions. The shorter of these is 2.317 (3) Å and completes at the Zn atom an irregular five‐coordinated geometry, which can be described as a square pyramid showing 30% distortion towards the trigonal bipyramid; the other Zn—N contact is much longer at 2.549 (3) Å.  相似文献   

15.
In the crystal structure of the title complex, [Co(C6H8N3S)3], the CoIII atom is octahedrally coordinated by three monodeprotonated bidentate 3,5‐di­methyl‐1H‐pyrazole‐1‐thio­carbox­amide ligands with two thio­carbox­amide N atoms in axial positions. The asymmetric unit contains two mol­ecules (A and B) and these mol­ecules are arranged in chains in an alternating fashion connected by N—H⋯S interactions.  相似文献   

16.
The crystal structure of the title compound, [Pt(C6H7N)2(C20H16N4)](PF6)2·C3H6O·0.5H2O, is composed of a bivalent square‐planar platinum(II) complex, two PF6 counter‐ions and solvent mol­ecules. The di‐2‐pyridylquinoxaline ligands are known to confer an `L shape' on square‐planar platinum(II) complexes, which also display inter­calating properties. The structural characterization reported here is a contribution to a wide‐ranging study focused on structural and dynamical analyses of these substrates, which may provide better insight into their biological mechanisms and activities. The expected `L‐shaped' skeleton of the metallic complex combined with the antiparallel orientation of substituted pyridines (anti conformation) generates chiral objects, found in the solid state as a racemic mixture.  相似文献   

17.
The structures of trans‐bis[2‐(amino­methyl)­pyridine‐κ2N,N′]­bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C6H8N2)2], (I), and [2‐(amino­ethyl)­pyridine‐κ2N,N′]bis­(saccharinato‐κN)­zinc(II), [Zn(C7H4NO3S)2(C7H10N2)], (II), exhibit octa‐ and tetrahedrally coordinated ZnII atoms, respectively. The di­amine ligands behave as N,N′‐bidentate ligands, while saccharinate (sac) is coordinated through the N atom. In (I), the complex lies about an inversion centre with the Zn atom disordered and displaced by 0.256 (2) Å from a centre of symmetry towards a sac N atom. The crystal structure of (I) is stabilized by N—H⋯O hydrogen bonds and the crystal packing of (II) is determined by hydrogen bonding as well as weak π–π stacking interactions between the sac ligands.  相似文献   

18.
In the crystal structure of the title compound [systematic name: diaqua­bis(6‐methyl‐2,2‐dioxo‐1,2,3‐oxathia­zin‐4‐olato‐κO4)bis­(3‐methyl­pyridine‐κN)nickel(II)], [Ni(C4H4NO4S)2(C6H7N)2(H2O)2], the NiII centre resides on a centre of symmetry and has a distorted octa­hedral geometry. The basal plane is formed by two carbonyl O atoms of two monodentate trans‐oriented acesulfamate ligands and two trans aqua ligands. The axial positions in the octa­hedron are occupied by two N atoms of two trans pyridine ligands. Mol­ecules are stacked in columns running along the a axis. There are π–π stacking inter­actions between the mol­ecules in each column, with a distance of 3.623 (2) Å between the centroids of the pyridine rings. There are also O—H⋯O inter­actions between the columns.  相似文献   

19.
In the title compound, [Cd(C12H8F2N3)2(C5H5N)2], the Cd atom lies on a crystallographic twofold axis in space group Iba2. The coordination geometry about the CdII ion corresponds to a rhombically distorted octahedron, with two deprotonated 1,3‐bis(2‐fluoro­phenyl)­triazenide ions, viz. FC6H4NNNC6H4F, acting as bidentate ligands (four‐electron donors). Two neutral pyridine (py) mol­ecules complete the coordination sphere in positions cis with respect to one another. The triazenide ligand is not planar (r.m.s. deviation = 0.204 Å), the dihedral angle between the phenyl rings of the terminal 2‐fluoro­phenyl substituents being 24.6 (1)°. The triazenide and pyridine Cd—N distances are 2.3757 (18)/2.3800 (19) and 2.3461 (19) Å, respectively. Intermolecular C—H⋯F interactions generate sheets of mol­ecules in the (010) plane.  相似文献   

20.
In the title compound, [Co(C6H15N3)(C7H15N2S)]S2O6·H2O, the Co—C bond distance is 1.9930 (13) Å, which is shorter than for related compounds with the linear 1,6‐di­amino‐3‐thia­hexan‐4‐ide anion in place of the macrocyclic 1‐thia‐4,7‐diazacyclo­decan‐8‐ide anion. The coordinated carbanion produces an elongation of 0.102 (7) Å of the Co—N bond to the 1,4,7‐tri­aza­cyclo­nonane N atom in the trans position. This relatively small trans influence is presumably a result of the tri­amine ligand forming strong bonds to the CoIII atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号