首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
卢晓波  张广宇 《物理学报》2015,64(7):77305-077305
石墨烯莫尔超晶格来源于六方氮化硼衬底对石墨烯的二维周期势调控. 由于这种外加的周期势对石墨烯能带具有显著的调制作用, 近年来引发了人们广泛的关注. 利用氮化硼衬底上外延的单晶石墨烯薄膜, 我们系统研究了基底调制下的莫尔超晶格以及相关的物理特性. 首先, 我们在电子端和空穴端都观测到了超晶格狄拉克点, 并且超晶格狄拉克点同本征狄拉克点类似, 都表现出绝缘体的特性. 在低温强磁场下, 可以观测到到单层石墨烯和双层石墨烯的量子霍尔效应. 并且, 从朗道扇形图中, 可以清晰的看到磁场下形成的超晶格朗道能级. 此外, 利用红外光谱的方法研究了强磁场下石墨烯超晶格体系不同朗道能级之间的跃迁, 发现这种跃迁满足有质量狄拉克费米子的行为, 对应38 meV的本征能隙. 在此基础上, 我们在380 meV位置发现一个同超晶格能量对应的光电导峰. 通过利用旋量势中三个不同的势分量对光电导峰进行拟合, 发现赝自旋杂化势起主导作用. 进一步研究表明赝自旋杂化势强度随载流子浓度的增大显著降低, 表明电子-电子相互作用引起的旋量势的重构.  相似文献   

2.
Because of Klein tunneling, electrostatic potentials are unable to confine Dirac electrons. We show that it is possible to confine massless Dirac fermions in a monolayer graphene sheet by inhomogeneous magnetic fields. This allows one to design mesoscopic structures in graphene by magnetic barriers, e.g., quantum dots or quantum point contacts.  相似文献   

3.
We have explored the zero, positive and negative quantum Goos–Hänchen (GH) shifts of the transmitted Dirac carriers in graphene through a potential barrier with vertical magnetic field. Numerical results show that only one energy position at the zero GH shift exists and is highly dependent on the y-directional wave vector, the energy gap, the magnetic field and the potential. The positive and negative GH shifts happen when the incident energy is more and less than the energy position at the zero GH shift, respectively. In addition, we found that there are two values of potential at the zero GH shifts, where a potential window can always keep the positive GH shifts. These results may be useful in designing a graphene-based valley or spin splitter as well as manipulating the electrons and holes in graphene nanostructure.  相似文献   

4.
In graphene,conductance electrons behave as massless relativistic particles and obey an analogue of the Dirac equation in two dimensions with a chiral nature.For this reason,the bounding of electrons in graphene in the form of geometries of quantum dots is impossible.In gapless graphene,due to its unique electronic band structure,there is a minimal conductivity at Dirac points,that is,in the limit of zero doping.This creates a problem for using such a highly motivated new material in electronic devices.One of the ways to overcome this problem is the creation of a band gap in the graphene band structure,which is made by inversion symmetry breaking(symmetry of sublattices).We investigate the confined states of the massless Dirac fermions in an impured graphene by the short-range perturbations for "local chemical potential" and "local gap".The calculated energy spectrum exhibits quite different features with and without the perturbations.A characteristic equation for bound states(BSs) has been obtained.It is surprisingly found that the relation between the radial functions of sublattices wave functions,i.e.,f_m~+(r),g_m~+(r),and f_m~-(r),g_m~-(r),can be established by SO(2) group.  相似文献   

5.
Massless Dirac fermions in monolayer graphene exhibit total transmission when normally incident on a scalar potential barrier, a consequence of the Klein paradox originally predicted by O Klein for relativistic electrons obeying the 3 + 1 dimensional Dirac equation. For bilayer graphene, charge carriers are massive Dirac fermions and, due to different chiralities, electron and hole states are not coupled to each other. Therefore, the wavefunction of an incident particle decays inside a barrier as for the non-relativistic Schr?dinger equation. This leads to exponentially small transmission upon normal incidence. We show that, in the presence of magnetic barriers, such massive Dirac fermions can have transmission even at normal incidence. The general consequences of this behavior for multilayer graphene consisting of massless and massive modes are mentioned. We also briefly discuss the effect of a bias voltage on such magnetotransport.  相似文献   

6.
We have studied the tunneling of Dirac fermions through magnetic barriers in graphene. Magnetic barriers are produced via delta function-like inhomogeneous magnetic fields in which Dirac fermions in graphene experience the tunneling barrier in the real sense in contrast to Klein paradox caused by electrostatic barriers. The transmission through the magnetic barriers as functions of incident energy and angle of incoming fermions shows characteristic oscillations associated with tunneling resonances. We have also found the confined states in the magnetic barrier region which turn out to correspond to the total internal reflection in the usual optics.  相似文献   

7.
The quantum Goos-H?nchen effect in graphene is found to be the lateral shift of Dirac fermions on the total reflection at a single p-n interface. In this paper, we investigate the lateral shifts of Dirac fermions in transmission through a monolayer graphene barrier. Compared to the smallness of the lateral shifts in total reflection, the lateral shifts can be enhanced by the transmission resonances when the incidence angle is less than the critical angle for total reflection. It is also found that the lateral shifts, as the function of the barrier’s width and incidence angle, can be negative and positive in the cases of Klein tunneling and classical motion. The modulation of the lateral shifts can be realized by changing the electrostatic potential and induced gap, which gives rise to some applications in graphene-based devices.  相似文献   

8.
We investigate the resonant transmission of Dirac electrons through inhomogeneous band gap graphene with square superlattice potentials by transfer matrix method. The effects of the incident angle of the electrons, Fermi energy and substrate-induced Dirac gaps on the transmission are considered. It is found that the Dirac gap of graphene adds another degree of freedom with respect to the incident angle, the Fermi energy and the parameters of periodic superlattice potentials (i.e., the number, width and height of the barriers) for the transmission. In particular, the inhomogeneous Dirac gap induced by staggered substrates can be used to manipulate the transmission. The properties of the conductance and Fano factor at the resonant peaks are found to be affected by the gaps significantly. The results may be helpful for the practical application of graphene-based electronic devices.  相似文献   

9.
Renormalization is one of the basic notions of condensed matter physics. Based on the concept of renormalization, the Landau’s Fermi liquid theory has been able to explain, why despite the presence of Coulomb interactions, the free electron theory works so well for simple metals with extended Fermi surface (FS). The recent synthesis of graphene has provided the condensed matter physicists with a low energy laboratory of Dirac fermions where instead of a FS, one has two Fermi points. Many exciting phenomena in graphene can be successfully interpreted in terms of free Dirac electrons. In this paper, employing dynamical mean field theory (DMFT), we show that an interacting Dirac sea is essentially an effective free Dirac theory. This observation suggests the notion of Dirac liquid as a fixed point of interacting 2 + 1 dimensional Dirac fermions. We find one more fixed point at strong interactions describing a Mott insulating state, and address the nature of semi-metal to insulator (SMIT) transition in this system.  相似文献   

10.
11.
We report transport measurements through graphene on SrTiO(3) substrates as a function of magnetic field B, carrier density n, and temperature T. The large dielectric constant of SrTiO(3) very effectively screens long-range electron-electron interactions and potential fluctuations, making Dirac electrons in graphene virtually noninteracting. The absence of interactions results in an unexpected behavior of the longitudinal resistance in the N=0 Landau level and in a large suppression of the transport gap in nanoribbons. The "bulk" transport properties of graphene at B=0 T, on the contrary, are completely unaffected by the substrate dielectric constant.  相似文献   

12.
We study the electronic band structures of massless Dirac fermions in symmetrical graphene superlattice with cells of three regions. opening gaps and additional Dirac points. Finally, we inspect the potential effect on minibands, the anisotropy of group velocity and the energy bands contours near Dirac points. We also discuss the evolution of gap edges and cutoff region near the vertical Dirac points.  相似文献   

13.
We study the confinement of Dirac fermions in graphene and in carbon nanotubes by an external magnetic field, mechanical deformations or inhomogeneities in the substrate. By applying variational principles to the square of the Dirac operator, we obtain sufficient and necessary conditions for confinement of the quasi-particles. The rigorous theoretical results are illustrated on the realistic examples of the three classes of traps.  相似文献   

14.
Weyl semimetals are a new class of Dirac material that possesses bulk energy nodes in three dimensions, in contrast to two dimensional graphene. In this paper, we study a Weyl semimetal subject to an applied magnetic field. We find distinct behavior that can be used to identify materials containing three dimensional Dirac fermions. We derive expressions for the density of states, electronic specific heat, and the magnetization. We focus our attention on the quantum oscillations in the magnetization. We find phase shifts in the quantum oscillations that distinguish the Weyl semimetal from conventional three dimensional Schrödinger fermions, as well as from two dimensional Dirac fermions. The density of states as a function of energy displays a sawtooth pattern which has its origin in the dispersion of the three dimensional Landau levels. At the same time, the spacing in energy of the sawtooth spike goes like the square root of the applied magnetic field which reflects the Dirac nature of the fermions. These features are reflected in the specific heat and magnetization. Finally, we apply a simple model for disorder and show that this tends to damp out the magnetic oscillations in the magnetization at small fields.  相似文献   

15.
Based on the Tight-Binding model, we have asymmetric massless Dirac fermions as the carriers in graphene under tension. Because of uniaxial strain, the velocities of Dirac fermions depend on their directions. This work studies the effect of the uniaxial strain on the spin transport through a single magnetic barrier of the strained graphene system. The result shows that graphene has a great potential for applications in nano-mechanical spintronic devices. This is because of strain in graphene can induce the spin-dependent pseudo-potentials at the barrier to control the spin currents of the junction.  相似文献   

16.
Ideal graphene is a gapless semiconductor consisting of a single layer of carbon atoms regularly arranged in a honeycomb lattice having infinite spatial extent in the (x,y)-plane, in which electrons behave as Dirac massless fermions. Even neglecting interactions with the anchoring substrate, a graphene sheet in real world has finite extent, leading to distinctive features in the conductivity of a given sample. In this letter we study the effect of a gradual channel constriction in graphene nanoribbons on their IV characteristics, using non-equilibrium Green's function formalism. The constriction width and the border cutting angle are the main parameters to be varied. We found that transmission through the channel is considerably affected by these parameters, presenting sharp peaks at specific energies, which can be attributed to a resonance due to the tuning of energy eigenvalues.  相似文献   

17.
We report high magnetic field scanning tunneling microscopy and Landau level spectroscopy of twisted graphene layers grown by chemical vapor deposition. For twist angles exceeding ~3° the low energy carriers exhibit Landau level spectra characteristic of massless Dirac fermions. Above 20° the layers effectively decouple and the electronic properties are indistinguishable from those in single-layer graphene, while for smaller angles we observe a slowdown of the carrier velocity which is strongly angle dependent. At the smallest angles the spectra are dominated by twist-induced van Hove singularities and the Dirac fermions eventually become localized. An unexpected electron-hole asymmetry is observed which is substantially larger than the asymmetry in either single or untwisted bilayer graphene.  相似文献   

18.

The ab initio calculations of the electronic structure of low-dimensional graphene–iron–nickel and graphene–silicon–iron systems were carried out using the density functional theory. For the graphene–Fe–Ni(111) system, band structures for different spin projections and total densities of valence electrons are determined. The energy position of the Dirac cone caused by the p z states of graphene depends weakly on the number of iron layers intercalated into the interlayer gap between nickel and graphene. For the graphene–Si–Fe(111) system, the most advantageous positions of silicon atoms on iron are determined. The intercalation of silicon under graphene leads to a sharp decrease in the interaction of carbon atoms with the substrate and largely restores the electronic properties of free graphene.

  相似文献   

19.
In the variational framework, we study the electronic energy spectrum of massless Dirac fermions of graphene subjected to one-dimensional oscillating magnetic and electrostatic fields centered around a constant uniform static magnetic field. We analyze the influence of the lateral periodic modulations in one direction, created by these oscillating electric and magnetic fields, on Dirac like Landau levels depending on amplitudes and periods of the field modulations. We compare our theoretical results with those found within the framework of non-degenerate perturbation theory. We found that the technique presented here yields energies lower than that obtained by the perturbation calculation, and thus gives more stable solutions for the electronic spectrum of massless Dirac fermion subjected to a magnetic field perpendicular to graphene layer under the influence of additional periodic potentials.  相似文献   

20.
Based on the Floquet scattering theory, a model of graphene-based electronic device is presented, in which electrical transport is controlled by adjusting Dirac fermions energy near resonance conditions. The presence of an oscillating field leads to the Fano resonance in transport through a magnetic structure in an armchair graphene nanoribbon (AGNR). The Fano resonance originates from bound states of the magnetic confinement, according to subband indices in the AGNR. The ballistic conductance is markedly affected by the Fano resonance due to the quasi-one-dimensional nature of AGNRs. The results may help realizing graphene electronics with the resonant characteristics in the conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号