首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A robust and effective composite film based on gold nanoparticles (GNPs)/room temperature ionic liquid (RTIL)/multi-wall carbon nanotubes (MWNTs) modified glassy carbon (GC) electrode was prepared by a layer-by-layer self-assembly technique. Cytochrome c (Cyt c) was successfully immobilized on the RTIL-nanohybrid film modified GC electrode by electrostatic adsorption. Direct electrochemistry and electrocatalysis of Cyt c were investigated. The results suggested that Cyt c could be tightly adsorbed on the modified electrode. A pair of well-defined quasi-reversible redox peaks of Cyt c was obtained in 0.10 M, pH 7.0 phosphate buffer solution (PBS). RTIL-nanohybrid film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis currents increased linearly to the H2O2 concentration in a wide range of 5.0 × 10−5– 1.15 × 10−3 M. Based on the multilayer film, the third-generation biosensor could be constructed for the determination of H2O2.  相似文献   

2.
Nanotextured diamond surfaces with geometrical properties close to protein dimensions were used for the realization of direct electron transfer of cytochrome c (cyt c) without any covalent bonding. The peroxidase activity of native and denatured cyt c was also investigated. Cyclic voltammograms of native cyt c show quasi-reversible electron transfer reactions, while no heme redox activity is detected for denatured cyt c. Unfolding (denaturation) of cyt c can be achieved in the presence of hydrogen peroxide. Partially or fully denatured cyt c showed higher peroxidase activity than native cyt c. This is because denatured cyt c loses its tertiary structure and hydrogen peroxide is easier to access the heme redox center. The apparent Michaelis–Menten constant Km for native and denatured cyt c has been determined to be 0.23 mM and 0.08 mM.  相似文献   

3.
Equilibrium studies on the ternary complex systems involving ampicillin (amp) as ligand (A) and imidazole containing ligands viz., imidazole (Him), benzimidazole (Hbim), histamine (Hist) and histidine (His) as ligands (B) at 37 °C and I = 0.15 mol dm?3 (NaClO4) show the presence of CuABH, CuAB and CuAB2. The proton in the CuABH species is attached to ligand A. In the ternary complexes the ligand, amp(A) binds the metal ion via amino nitrogen and carbonyl oxygen atom. The CuAB (B = Hist/His)/CuAB2 (B = Him/Hbim) species have also been isolated and the analytical data confirmed its formation. Non-electrolytic behavior and monomeric type of chelates have been assessed from their low conductance and magnetic susceptibility values. The electronic and vibrational spectral results were interpreted to find the mode of binding of ligands to metal and geometry of the complexes. This is also supported by the g tensor values calculated from ESR spectra. The thermal behaviour of complexes were studied by TGA/DTA. The redox behavior of the complexes has been studied by cyclic voltammetry. The antimicrobial activity and CT DNA cleavage study of the complexes show higher activity for ternary complexes.  相似文献   

4.
This work points out that electrogeneration of silica gel (SG) films on glassy carbon electrodes (GCEs) can be applied to immobilize biomolecules – hemoglobin (Hb) or glucose oxidase (GOD) or both of them in mixture – without preventing their activity. These proteins were physically entrapped in the sol–gel material in the course of the electro-assisted deposition process applied to form the thin films onto the electrode surface. SG films were prepared from a precursor solution by applying a suitable cathodic potential likely to induce a local pH increase at the electrode/solution interface, accelerating thereby polycondensation of the silica precursors with concomitant film formation. Successful immobilization of proteins was checked by various physico-chemical techniques. Both Hb and GOD were found to undergo direct electron transfer, as demonstrated by cyclic voltammetry. GCE–SG–Hb gave rise to well-defined peaks at potentials Ec = −0.29 V and Ea = −0.17 V in acetate buffer, corresponding to the FeIII/FeII redox system of heme group of the protein, while GCE–SG–GOD was characterized by the typical signals of FAD group at Ec = −0.41 V and Ea = −0.33 V in phosphate buffer. These two redox processes were also evidenced on a single voltammogram when both Hb and GOD were present together in the same SG film. Hb entrapped in the silica thin film displayed an electrocatalytic behavior towards O2 and H2O2 in solution, respectively in the mM and μM concentration ranges. Immobilized GOD kept its biocatalytic properties towards glucose. Combined use of these two proteins in mixture has proven to be promising for detection of glucose in solution via the electrochemical monitoring of oxygen consumption (decrease of the oxygen electrocatalytic signal).  相似文献   

5.
In this work, histidine derivatives bearing an acetic acid or a propyl amine substituent on the Nε-atom are conjugated to the b-acid, c-acid and d-acid moiety of cyanocobalamin (vitamin B12) via amide formation. Four different derivatives were prepared with different sites of conjugation (b-, c- or d-acid) and different spacer lengths between histidine and the acid moiety. These conjugates can be efficiently labeled with [99mTc(OH2)3(CO)3]+ at yields higher than 95% under mild conditions (50 °C, 30 min, 10−4 M). The biodistribution of the 99mTc(CO)3 labeled conjugates is determined in mice bearing B16-F10 melanoma tumors. The organ distribution varies significantly for each of the derivatives with the percentage injected dose per gram of tumor tissue ranging from 4.4 ± 0.9 to 9.2 ± 2.0.  相似文献   

6.
In this work we demonstrated the micromanipulation of a single magnetic microparticle (Fe3O4) modified with Prussian blue (PB) for use in magnetic-switchable electrochemistry. A single Fe3O4-PB microparticle with 120 μm was isolated in an electrochemical microcell (20 μL), in which a fine control of PB electrochemical process on carbon electrode (Ø = 4.0 mm) was obtained. For cyclic voltammetry, redox processes attributed to PB/PW (Prussian blue/Prussian white) one electron redox couple were observed, however the capacitive currents were very high. On the other hand, by using differential pulse voltammetry, a maximum faradaic current for anodic peak of 200 nA cm 2 at 0.06 V was observed. Several and high stable chronoamperograms were obtained by “switch on” and “switch off” magnetic commutative states for a single microparticle, showing that the system developed here can be very promising for application in electrochemistry.  相似文献   

7.
Alkyl and arylplatinum complexes with 1,5-cyclooctadiene ligand, [PtR2(cod)] (R = Me, Ph, C6H4-p-CF3, C6F5), react with secondary phosphines, PHR′2 (R′ = i-Bu, t-Bu, Ph), to afford the mononuclear platinum complexes, cis-[PtR2(PHR′2)2] (1a: R = Me, R′ = i-Bu; 1b: R = Me, R′ = t-Bu; 1c: R = Me, R′ = Ph; 2a: R = Ph, R′ = i-Bu; 2b: R = Ph, R′ = t-Bu; 2c: R = R′ = Ph; 3a: R = C6H4-p-CF3, R′ = i-Bu; 3b: R = C6H4-p-CF3, R′ = t-Bu; 3c: R = C6H4-p-CF3, R′ = Ph; 4a: R = C6F5, R′ = i-Bu; 4c: R = C6F5, R′ = Ph) in 81–98% yields. Molecular structures of the complexes except for 1a, 1c and 2a were determined by X-ray crystallography. Complex 1b has a square-planar structure with Pt–C(methyl) bonds of 2.083(8) and 2.109(8) Å, while the Pt–C(aryl) bonds of 2bc, 3ac, 4a and 4c (2.055(1)–2.073(8) Å) are shorter than them. Thermal decomposition of 1b, 2ac, and 3ac releases methane, biphenyl or 4,4′-bis(trifluoromethyl)biphenyl as the organic products, which are characterized by NMR spectroscopy. The solid product of the thermal reactions of 2b and 2c were characterized as the metallopolymers formulated as [Pt(PR′2)2]n (5b: R′ = tBu; 5c: R′ = Ph), based on the solid-state NMR and elemental analyses.  相似文献   

8.
《Polyhedron》2005,24(6):723-729
The mixed ligand complex [La(hfa)3(Phen)2] (I) was obtained by the interaction of La(hfa)3 and Phen; its composition does not depend on the stoichiometry of the reagents. According to the X-ray single crystal analysis data, complex I crystallizes in the monoclinic space group P21/n, with a = 13.583(3) Å, b = 16.959(3) Å, c = 18.860(4) Å, β = 94.71(3)° and Z = 4. The structure of I consists of isolated mononuclear molecules, the coordination number of La being 10. Thermal behaviour and composition of the vapor phase have been studied for I by thermal analysis and mass-spectrometry using a Knudsen cell. The mixed ligand complex I was found to sublime congruently in the temperature range 370–460 K: [La(hfa)3(Phen)2](s) = [La(hfa)3(Phen)](g) + Phen(g), ΔrH0(T) = 316.2 ± 1.8 kJ/mol.  相似文献   

9.
A room temperature ionic liquid (RTIL) modified carbon paste electrode was constructed based on the substitute of paraffin with 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) as binder for carbon paste. Direct electrochemistry and electrocatalytic behaviors of hemoglobin (Hb) entrapped in the sodium alginate (SA) hydrogel film on the surface of this carbon ionic liquid electrode (CILE) were investigated. The presence of IL in the CILE increased the electron transfer rate and provided a biocompatible interface. Hb remained its bioactivity on the surface of CILE and the SA/Hb modified electrode showed a pair of well-defined, quasi-reversible cyclic voltammetric peaks with the apparent standard potential (E0′) at about −0.344 V (vs. SCE) in pH 7.0 Britton–Robinson (B–R) buffer solution, which was attributed to the Hb Fe(III)/Fe(II) redox couple. UV–Vis absorption spectra indicated that heme microenvironment of Hb in SA film was similar to its native status. Hb showed a thin-layer electrochemical behavior in the SA film with the direct electron transfer achieved on CILE without the help of electron mediator. Electrochemical investigation indicated that Hb took place one proton with one electron electrode process and the average surface coverage of Hb in the SA film was 3.2 × 10−10 mol/cm2. The immobilized Hb showed excellent electrocatalytic responses to the reduction of H2O2 and nitrite.  相似文献   

10.
The mono-dentate ligands, 3-aminomethyl-N-phthalimido-pyridine (L1) and 3-amino-N-phthalimido-pyridine (L2), were synthesised using a solvent-free melt method. These ligands were then used to access three pairs of functionalised luminescent ReI complexes of the generic type fac-{Re(CO)3(diimine)(Ln)}(BF4) [where diimine = 4,4′-dimethyl-2,2′-bipyridine (dmb); 2,2′-bipyridine (bpy); 1,10-phenanthroline (phen)]. X-ray crystallography has been used to structurally characterise five of the complexes showing that in the cases of the L1 species the phthalimide unit is adjacent to and co-planar with the coordinated diimine ligand. Solution state UV–Vis absorption, electrochemistry and IR studies confirm that the proposed formulations and coordination modes exist in solution. The photophysical studies show that the visible emission from each of the six complexes is 3MLCT at room temperature. Within each pair of complexes the precise energy of the emission was subtly dependent upon the axial ligand, Ln with luminescence lifetimes in the range 121–288 ns.  相似文献   

11.
《Solid State Sciences》2007,9(8):686-692
Hydrothermal reactions of 2-quinolinephosphonic acid (1) and CuSO4 or CdSO4 result in two new compounds with formula Cu(2-C9H6NPO3) (2) and Cd(2-C9H6NPO3)(H2O) (3). Compound 2 has a layer structure in which dimers of edge-sharing {CuO4N} square-pyramids are linked by {CPO3} tetrahedra through corner sharing. Compound 3 shows a new type of layer structure where chains of corner sharing {CdO5N} octahedra are connected by {CPO3} tetrahedra into an inorganic layer. The quinoline groups fill in the inter-layer spaces in both cases. Crystal data for 1: monoclinic, space group P21/c, a = 10.270(2) Å, b = 13.566(3) Å, c = 6.9818(16) Å, β = 101.916(4)°, V = 951.8(4) Å3, Z = 4. For 2: monoclinic, space group P21/c, a = 13.976(3) Å, b = 7.9398(18) Å, c = 7.8687(18) Å, β = 101.150(5)°, V = 856.7(3) Å3, Z = 4. For 3: monoclinic, space group P21/c, a = 17.164(4) Å, b = 5.4870(12) Å, c = 10.850(2) Å, β = 101.557(4)°, V = 1001.1(4) Å3, Z = 4. The magnetic measurement on 2 reveals a dominant antiferromagnetic exchange coupling between the Cu(II) centers. A quasi-reversible electrochemical reaction is observed for complex 2 immobilized on the surface of GC electrode, corresponding to the redox couple Cu2+/Cu+. The fluorescent properties of 13 are also investigated.  相似文献   

12.
Using the polyfunctional ligand 2-phosphonethanesulfonic acid (H3L) a high-throughput (HT) study was started for the systematic investigation of the system SrCl2/H3L/NaOH/H2O. The HT experiment comprising 48 individual reactions were performed to systematically investigate the influence of pH of the starting mixture as well as the molar ratio Sr2+:H3L. Two new compounds SrH(O3P–C2H4–SO3) (1) and Sr3(O3P–C2H4–SO3)2(H2O)2 (2) were obtained and structurally characterized by single-crystal X-ray diffraction. The reaction products synthesized under hydrothermal conditions always contain traces of SrSO4, which are due to the decomposition of small amounts of the ligand. While compound 2 could only be obtained under hydrothermal conditions, the synthesis of 1 could be accomplished under milder reaction conditions and a reaction scale-up could be performed. Compound 1 crystallizes in a monoclinic system with space group C2/c (no. 15), a = 534.73(11) pm, b = 1648.7(3) pm, c = 825.43(17) pm, β = 105.34(3)°, V = 701.8(2)–106 pm3, Z = 4, R1 = 0.0268, and wR2 = 0.0642 for I > 2σ(I). Compound 2 crystallizes in a triclinic system with space group P-1 (no. 2), a = 700.97(14) pm, b = 1008.5(2) pm, c = 1274.8(3) pm, α = 97.63(3)°, β = 92.03(3)°, γ = 92.03(3)°, V = 843.7(3)–106 pm3, Z = 2, R1 = 0.0360, and wR2 = 0.0896 for I > 2σ(I). In the structure of compound 1 the phosphorous and sulfur atoms cannot be distinguished due to identical crystallographic positions. Thus, an averaged structure was obtained which is built up by edge-sharing SrO8 polyhedra that form infinite M–O–M chains. Compound 2 contains corner-, edge-, and face-sharing SrO8 polyhedra which form inorganic M–O–M layers. These M–O–M chains (1) and layers (2) are connected to a three-dimensional network by the –CH2CH2– group of the ligand, respectively. Additional characterization by thermogravimetric analysis and IR-spectroscopy for compound 1 is also presented.  相似文献   

13.
The (p, ρ, T) measurements and visual observations of the meniscus for propane were carried out carefully in the critical region over the range of temperatures: ?60 mK ? (T ? Tc) ?  40 mK and of densities: ?4 kg · m?3 ? (ρ ? ρc) ? 6 kg · m?3 by a metal-bellows volumometer with an optical cell. Vapour pressures were also measured at T = (320.000, 343.132, 369.000, and 369.625) K. The critical point of Tc, ρc, and pc was determined by the image analysis of the critical opalescence. Comparisons of the critical parameters with values given in the literature are presented.  相似文献   

14.
A novel zinc diphosphonate, Zn[HO3PCH2(C6H4)CH2PO3H] (1) was synthesized from tetraethyl para-xylylenediphosphonate, Et2O3PCH2C6H4CH2PO3Et2, and Zn (AcO)2·2H2O under solvothermal conditions. The structure of compound 1 was determined by single-crystal X-ray diffraction, which reveals that the structure crystallizes in the monoclinic space group C2/c (No. 15), with a = 22.4844(19) Å, b = 6.4361(5) Å, c = 8.1194(7) Å, β = 102.595(2)°, V = 1146.70(16) Å3, T = 298(2) K, Z = 8. The novel three-dimensional (3D) construction is simply built up from linear inorganic chains of corner-sharing four-rings of tetrahedral [ZnO4] and [PO3C] which connected adjacent chains by the organophosphorus ligand para-xylylenediphosphonate. The framework has 10 Å × 4 Å (containing the van der Waals radii of atoms) channels running along the b-axis.  相似文献   

15.
Two new nickel(II) [Ni(L)2] and copper(II) [Cu(L)2] complexes have been synthesized with bidentate NO donor Schiff base ligand (2-{(Z)-[furan-2-ylmethyl]imino]methyl}-6-methoxyphenol) (HL) and both complexes Ni(L)2 and Cu(L)2 have been characterized by elemental analyses, IR, UV–vis, 1H, 13C NMR, mass spectroscopy and room temperature magnetic susceptibility measurement. The tautomeric equilibria (phenol-imine, O–H?N and keto-amine, O?H–N forms) have been systemetically studied by using UV–vis absorption spectra for the ligand HL. The UV–vis spectra of this ligand HL were recorded and commented in polar, non-polar, acidic and basic media. The crystal structures of these complexes have also been determined by using X-ray crystallographic techniques. The complexes Ni(L)2 and Cu(L)2 crystallize in the monoclinic space group P21/n and P21/c with unit cell parameters: a = 10.4552(3) Å and 12.1667(4) Å, b = 8.0121(3) Å and 10.4792(3) Å, c = 13.9625(4) Å and 129.6616(3)Å, V = 1155.22(6) Å3 and 1155.22(6) Å3, Dx = 1.493 and 1.476 g cm?3 and Z = 2 and 2, respectively. The crystal structures were solved by direct methods and refined by full-matrix least squares to a find R = 0.0377 and 0.0336 of for 2340 and 2402 observed reflections, respectively.  相似文献   

16.
Two inorganic polymers constructed from transition metal-substituted heteropolymolybdates, [(CH3)3NH]5n[PMo11MO39]n·xH2O (M = Mn2+, x = n (1); M = Co2+, x = 2n (2)), have been synthesized in aqueous solutions and characterized by IR, TGA, and single-crystal X-ray diffraction analysis. Crystal data: 1, monoclinic, C2/c, a = 17.1322(7) Å, b = 17.6062(7) Å, c = 17.6459(7) Å, β = 103.2220(10)°, V = 5181.5(4) Å3 and Z = 4; 2, triclinic, P-1, a = 12.1986(7) Å, b = 13.0973(7) Å, c = 16.7736(9) Å, α = 97.1810(10)°, β = 98.5040(11)°, γ = 96.3920(10)°, V = 2606.5(2) Å3 and Z = 2. The cyclic voltammograms of 1 and 2 show irreversible redox peaks in DMF solution and there are three reversible couples after addition of 0.1 M H2SO4 aqueous solutions. The cyclic voltammograms of 1/2-modified carbon paste electrode (1-CPE/2-CPE) show two consecutive reversible two-electron redox processes. Especially, 2-CPE shows good electrocatalytic activity toward the reduction of nitrite and hydrogen peroxide. The magnetic properties of the two complexes have also been investigated.  相似文献   

17.
Aligned carbon nanotubes (ACNTs) electrode has been developed for the direct protein electrochemistry and enzyme-biosensor study involving two types of nanoparticles. Pt nanoparticles (Ptnano) were electro-modified on the ACNTs’ each tube, greatly increasing the electrode surface area for locating protein and also its electronic transfer ability. Glucose oxidase (GOD) with chitosan (CS) and CdS nanoparticles electrochemically coated on each tube of ACNTs–Ptnano by the electrodeposition reaction of CS when pH value passing its pKa. The CdS nanoparticles between ACNTs electrode and GOD have stimulated the GOD’s direct electron transfer during its redox reaction of FAD/FADH2. The CS–GOD–CdS/ACNTs–Ptnano electrode also offer sensitive response to the substrate of glucose with detection limit of 46.8 μM (S/N = 3) and apparent Michaelis–Menten constant of 11.86 mM.  相似文献   

18.
Reactions of Schiff bases (H2apahR) derived from acetophenone and acid hydrazides, triethylamine and [Ru(PPh3)3Cl2] (1:2:1 mole ratio) in methanol provide cyclometallated ruthenium(III) complexes of formula trans-[Ru(apahR)(PPh3)2Cl] in 74–81% yields. The complexes have been characterized by elemental analysis, magnetic susceptibility, spectroscopic (infrared, electronic and EPR) and electrochemical measurements. X-ray crystal structures of two representative complexes have been determined. In each complex, the metal centre is in distorted octahedral CNOClP2 coordination sphere assembled by the C,N,O-donor meridionally spanning apahR2?, the chloride and the two mutually trans-oriented PPh3 molecules. All the complexes are one-electron paramagnetic (μeff. = 1.85–1.98 μB) and display rhombic EPR spectra in frozen (120 K) dichloromethane-toluene (1:1) solution. Electronic spectra of the complexes display several absorptions within 470–270 nm due to ligand-to-metal charge transfer and ligand centred transitions. The complexes are redox active and display a Ru(III)  Ru(II) reduction and a Ru(III)  Ru(IV) oxidation in the potential ranges ?0.66 to ?0.70 V and 0.75 to 0.80 V (vs. Ag/AgCl), respectively.  相似文献   

19.
The critical temperatures Tc and the critical pressures pc of dihexyl, dioctyl, and didecyl ethers have been measured. According to the measurements, the coordinates of the critical points are Tc = (665 ± 7) K, pc = (1.44 ± 0.04) MPa for dihexyl ether, Tc = (723 ± 7) K, pc = (1.19 ± 0.04) MPa for dioctyl ether, and Tc = (768 ± 8) K, pc = (1.03 ± 0.03) MPa for didecyl ether. All the ethers studied degrade chemically at near-critical temperatures. A pulse-heating method applicable to measuring the critical properties of thermally unstable compounds has been used. The times from the beginning of a heating pulse to the moment of reaching the critical temperature were from 0.06 to 0.46 ms. The short residence times provide little decomposition of the substances in the course of the experiments. The critical properties of the ethers investigated in this work have been discussed together with those of methyl to butyl ethers. The experimental critical constants of the ethers have been compared with those estimated by the group-contribution methods of Wilson and Jasperson and Marrero and Gani. The Wilson/Jasperson method provides a better estimation of the critical temperatures and pressures of simple aliphatic ethers in comparison with the Marrero/Gani method if reliable normal boiling temperatures are used in the method of Wilson and Jasperson.  相似文献   

20.
We immobilized human cytochrome P450 (CYP), a membrane-bound enzyme, onto both smooth and nanostructured surfaces of gold electrodes via a naphthalene thiolate monolayer film. Rapid electron transfer of CYP with an electrode as a redox partner took place when the enzyme was immobilized onto an electrode surface with nanostructures. This structure was easily prepared by conventional sputtering techniques. A well-defined pair of peaks was observed at ? 0.175 V (vs. SHE) with the largest heterogeneous electron transfer rate constant of 340 s? 1 for human CYP. The positive redox potential shift of 45 mV upon drug (testosterone) binding was clearly detected, which corresponded to a change in the spin states of heme iron in CYP. The present study showed that gold sputtered surfaces are very useful for direct electron transfer reactions of human CYP isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号