首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the title compound, 2‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐5‐methyl­pyrimidin‐4(1H)‐one, C10H15N3O4, the conformation of the N‐glycosidic bond is syn and the 2‐deoxy­ribo­furan­ose moiety adopts an unusual OT1 sugar pucker. The orientation of the exocyclic C4′—C5′ bond is +sc (+gauche).  相似文献   

2.
We describe the stereoselective synthesis of (2′S)‐2′‐deoxy‐2′‐C‐methyladenosine ( 12 ) and (2′S)‐2′‐deoxy‐2′‐C‐methylinosine ( 14 ) as well as their corresponding cyanoethyl phosphoramidites 16 and 19 from 6‐O‐(2,6‐dichlorophenyl)inosine as starting material. The methyl group at the 2′‐position was introduced via a Wittig reaction (→ 3 , Scheme 1) followed by a stereoselective oxidation with OsO4 (→ 4 , Scheme 2). The primary‐alcohol moiety of 4 was tosylated (→ 5 ) and regioselectively reduced with NaBH4 (→ 6 ). Subsequent reduction of the 2′‐alcohol moiety with Bu3SnH yielded stereoselectively the corresponding (2′S)‐2′‐deoxy‐2′‐C‐methylnucleoside (→ 8a ).  相似文献   

3.
4.
2′‐Deoxy‐1‐methyladenosine was incorporated into synthetic oligonucleotides by phosphoramidite chemistry. Chloroacetyl protecting group and controlled anhydrous deprotection conditions were used to avoid Dimroth rearrangement. Hybridization studies of intramolecular duplexes showed that introduction of a modified residue into the loop region of the oligonucleotide hairpin increases the melting temperature. It was shown that modified oligonucleotides may be easily transformed into oligonucleotides containing 2′‐deoxy‐N6‐methyladenosine.  相似文献   

5.
The title compound, 1‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐5‐(prop‐1‐ynyl)pyrimidin‐2,4(1H,3H)‐dione, C12H14N2O5, shows two conformations in the crystalline state: conformer 1 adopts a C2′‐endo (close to 2E; S‐type) sugar pucker and an anti nucleobase orientation [χ = −134.04 (19)°], while conformer 2 shows an S sugar pucker (twisted C2′‐endo–C3′‐exo), which is accompanied by a different anti base orientation [χ = −162.79 (17)°]. Both molecules show a +sc (gauche, gauche) conformation at the exocyclic C4′—C5′ bond and a coplanar orientation of the propynyl group with respect to the pyrimidine ring. The extended structure is a three‐dimensional hydrogen‐bond network involving intermolecular N—H...O and O—H...O hydrogen bonds. Only O atoms function as H‐atom acceptor sites.  相似文献   

6.
Isoguanosine ( 3 ) underwent a coupling reaction with diaryl disulfides in the presence of tri‐n‐butylphosphine when its 6‐amino group was protected by N,N‐dimethylaminomethylidene. The synthesis of 5′‐deoxy‐N3,5′‐cycloisoguanosine ( 6 ) and its 2′,3′‐O‐isopropylidene derivative ( 11 ) were accomplished in excellent yields from isoguanosines ( 3 & 10 ) in the presence of triphenylphospine and carbon tetrachloride in pyridine. Chlorination at the 5′‐position of isoguanosine ( 3 ) with thionyl chloride followed by the aqueous base‐promoted cyclization afforded the same product 6 . The structures were elucidated by spectroscopic analysis including IR, UV, 1‐D and 2‐D NMR.  相似文献   

7.
Convergent syntheses of the 9‐(3‐X‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranosyl)adenines 5 (X=N3) and 7 (X=NH2), as well as of their respective α‐anomers 6 and 8 , are described, using methyl 2‐azido‐5‐O‐benzoyl‐2,3‐dideoxy‐2‐fluoro‐β‐D ‐ribofuranoside ( 4 ) as glycosylating agent. Methyl 5‐O‐benzoyl‐2,3‐dideoxy‐2,3‐difluoro‐β‐D ‐ribofuranoside ( 12 ) was prepared starting from two precursors, and coupled with silylated N6‐benzoyladenine to afford, after deprotection, 2′,3′‐dideoxy‐2′,3′‐difluoroadenosine ( 13 ). Condensation of 1‐O‐acetyl‐3,5‐di‐O‐benzoyl‐2‐deoxy‐2‐fluoro‐β‐D ‐ribofuranose ( 14 ) with silylated N2‐palmitoylguanine gave, after chromatographic separation and deacylation, the N7β‐anomer 17 as the main product, along with 2′‐deoxy‐2′‐fluoroguanosine ( 15 ) and its N9α‐anomer 16 in a ratio of ca. 42 : 24 : 10. An in‐depth conformational analysis of a number of 2,3‐dideoxy‐2‐fluoro‐3‐X‐D ‐ribofuranosides (X=F, N3, NH2, H) as well as of purine and pyrimidine 2‐deoxy‐2‐fluoro‐D ‐ribofuranosyl nucleosides was performed using the PSEUROT (version 6.3) software in combination with NMR studies.  相似文献   

8.
9.
We describe the synthesis of (5′S)‐5′‐C‐butylthymidine ( 5a ), of the (5′S)‐5′‐C‐butyl‐ and the (5′S)‐5′‐C‐isopentyl derivatives 16a and 16b of 2′‐deoxy‐5‐methylcytidine, as well as of the corresponding cyanoethyl phosphoramidites 9a , b and 14a , b , respectively. Starting from thymidin‐5′‐al 1 , the alkyl chain at C(5′) is introduced via Wittig chemistry to selectively yield the (Z)‐olefin derivatives 3a and 3b (Scheme 2). The secondary OH function at C(5′) is then introduced by epoxidation followed by regioselective reduction of the epoxy derivatives 4a and 4b with diisobutylaluminium hydride. In the latter step, a kinetic resolution of the diastereoisomer mixture 4a and 4b occurs, yielding the alkylated nucleoside 2a and 2b , respectively, with (5′S)‐configuration in high diastereoisomer purity (de=94%). The corresponding 2′‐deoxy‐5‐methylcytidine derivatives are obtained from the protected 5′‐alkylated thymidine derivatives 7a and 7b via known base interconversion processes in excellent yields (Scheme 3). Application of the same strategy to the purine nucleoside 2′‐deoxyadenine to obtain 5′‐C‐butyl‐2′‐deoxyadenosine 25 proved to be difficult due to the sensitivity of the purine base to hydride‐based reducing agents (Scheme 4).  相似文献   

10.
The pairing propensity of new DNA analogues with a phosphinato group between O−C(3′) and a newly introduced OCH2 group at C(8) and C(6) of 2′‐deoxyadenosine and 2′‐deoxyuridine, respectively, was evaluated by force‐field calculations and Maruzen model studies. These studies suggest that these analogues may form autonomous pairing systems, and that the incorporation of single modified units into DNA 14mers is compatible with duplex formation. To evaluate the incorporation, we prepared the required phosphoramidites 3 and 4 from 2′‐deoxyadenosine and 2′‐deoxyuridine, respectively. The phosphoramidite 5 was similarly prepared to estimate the influence of a CH2OH group at C(8) on the duplex stability. The modified 14‐mers 6 – 9 were prepared by solid‐phase synthesis. Pairing studies show a decrease of the melting temperature by 2.5° for the duplex 13 ⋅ 9 , and of 6 – 8° for the duplexes 10 ⋅ 6 , 11 ⋅ 6 , 13 ⋅ 7 , and 14 ⋅ 8 , as compared to the unmodified duplexes.  相似文献   

11.
The title compound, C58H64S8, has been prepared by Pd‐catalysed direct C—H arylation of tetrathienonaphthalene (TTN) with 5‐hexyl‐2‐iodothiophene and recrystallized by slow evaporation from dichloromethane. The crystal structure shows a completely planar geometry of the TTN core, crystallizing in the monoclinic space group P21/c. The structure consists of slipped π‐stacks and the interfacial distance between the mean planes of the TTN cores is 3.456 (5) Å, which is slightly larger than that of the comparable derivative of tetrathienoanthracene (TTA) with 2‐hexylthiophene groups. The packing in the two structures is greatly influenced by both the aromatic core of the structure and the alkyl side chains.  相似文献   

12.
The structure of the title compound, 4‐allyl‐2‐methoxy‐6‐[(4‐nitrophenyl)diazenyl]phenyl benzoate, C23H19N3O5, displays the characteristic features of azobenzene derivatives. The azobenzene moiety of the molecule has a trans configuration and in this moiety, average C—N and N=N bond lengths are 1.441 (3) and 1.241 (3) Å, respectively.  相似文献   

13.
In the crystal structures of four thiophene derivatives, (E)‐3′‐[2‐(anthracen‐9‐yl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C28H18S3, (E)‐3′‐[2‐(1‐pyrenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C30H18S3, (E)‐3′‐[2‐(3,4‐dimethoxyphenyl)ethenyl]‐2,2′:5′,2′′‐terthiophene, C22H18O2S3, and (E,E)‐1,4‐bis[2‐(2,2′:5′,2′′‐terthiophen‐3′‐yl)ethenyl]‐2,5‐dimethoxybenzene, C36H26O2S6, at least one of the terminal thiophene rings is disordered and the disorder is of the flip type. The terthiophene fragments are far from being coplanar, contrary to terthiophene itself. The central C—C=C—C fragments are almost planar but the bond lengths suggest slight delocalization within this fragment. The crystal packing is determined by van der Waals interactions and some weak, relatively short, C—H...S and C—H...π directional contacts.  相似文献   

14.
This paper describes a new route for the synthesis of 1′‐homo‐N‐nucleoside derivatives by means of either methyltrioxorhenium (MTO) or supported MTO catalysts, with H2O2 as the primary oxidant. Under these selective conditions, the oxyfunctionalization of the heterocyclic ring and the N heteroatom oxidation were operative processes, regardless of the type of substrate used, that is, purine or pyrimidine derivatives. In addition, the oxidation of 1′‐homo‐N‐thionucleosides, showed the occurrence of site‐specific oxidative nucleophilic substitutions of the heterocyclic ring. The MTO/H2O2 system showed, in general, high reactivity under both homogeneous and heterogeneous conditions, affording the final products with high conversion values of substrates and from medium to high yields. Many of the novel 1′‐homo‐N‐nucleoside analogues were active against the influenza A virus, without any cytotoxic effects, retaining their activity in both protected and unprotected forms.  相似文献   

15.
The syntheses of the 5′-triphosphates of 2′-deoxyisoguanosine (=p3isoGd) and 2′-deoxy-5-methylisocytidine (=p3me5isoCd), two new bases for the genetic alphabet, are described. The triphosphates were synthesized from the corresponding nucleosides using a transient-protection procedure. The introduction of a methyl group at the 5-position of 2′-deoxyisocytidine remarkably improved the stability of the triphosphate. Characterization of the triphosphates included enzymatic incorporation opposite the complementary base in a template oligonucleotide.  相似文献   

16.
The crystal structures of four cyclo­alkane­spiro‐4′‐imidazolidine‐2′,5′‐dithiones, namely cyclo­pentane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.4]­nonane‐2,4‐dithione}, C7H10N2S2, cyclo­hexane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.5]decane‐2,4‐dithione}, C8H12N2S2, cyclo­heptane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐diaza­spiro­[4.6]undecane‐2,4‐dithione}, C9H14N2S2, and cyclo­octane­spiro‐4′‐imidazolidine‐2′,5′‐dithione {systematic name: 1,3‐di­aza­spiro­[4.7]dodecane‐2,4‐dithione}, C10H16N2S2, have been determined. The three‐dimensional packing in all of the structures is based on closely similar chains, in which hydantoin moieties are linked through N—H⋯S hydrogen bonding. The size of the cyclo­alkane moiety influences the degree of its deformation. In the cyclo­octane compound, the cyclo­octane ring assumes both boat–chair and boat–boat conformations.  相似文献   

17.
4, 4′,5, 5′‐Tetranitro‐2, 2′‐bisimidazole (TNBI) was synthesized by nitration of bisimidazole (BI) and recrystallized from acetone to form a crystalline acetone adduct. Its ammonium salt ( 1 ) was obtained by the reaction with gaseous ammonia. In order to explore new explosives or propellants several energetic nitrogen‐rich 2:1 salts such as the hydroxylammonium ( 3 ), guanidinium ( 4 ), aminoguanidinium ( 5 ), diaminoguanidinium ( 6 ) and triaminoguanidinium 7 4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazolate were prepared by facile metathesis reactions. In addition, methylated 1, 1′‐dimethyl‐4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazole (Me2TNBI, 8 ) was synthesized by the reaction of 2 and dimethyl sulfate. Metal salts of TNBI can also be easily synthesized by using the corresponding metal bases. This was proven by the synthesis of pyrotechnically relevant dipotassium 4, 4′,5, 5′‐tetranitro‐2, 2′‐bisimidazolate ( 2 ), which is a brilliant burning component e.g. in near‐infrared flares. All compounds were characterized by single crystal X‐ray diffraction, NMR and vibrational spectroscopy, elemental analysis and DSC. The sensitivities were determined by BAM methods (drophammer and friction tester). The heats of formation were calculated using CBS‐4M electronic enthalpies and the atomization method. With these values and mostly the X‐ray densities different detonation parameters were computed by the EXPLO5 computer code. Due to the great thermal stability and calculated energetic properties, especially guanidinium salt 4 could be served as a HNS replacement.  相似文献   

18.
In the title compound, 2′‐deoxy‐7‐propynyl‐7‐deaza­adenosine, C14H16N4O3, the torsion angle of the N‐glycosylic bond is anti [χ = −130.7 (2)°]. The sugar pucker of the 2′‐deoxy­ribo­furanosyl moiety is C2′‐endo–C3′‐exo, 2T3 (S‐type), with P = 185.9 (2)° and τm = 39.1 (1)°, and the orientation of the exocyclic C4′—C5′ bond is −ap (trans). The 7‐substituted propynyl group is nearly coplanar with the heterocyclic base moiety. Mol­ecules of the nucleoside form a layered network in which the heterocyclic bases are stacked head‐to‐tail with a closest distance of 3.197 (1) Å. The crystal structure of the nucleoside is stabilized by three inter­molecular hydrogen bonds of types N—H⋯ O, O—H⋯ N and O—H⋯ O.  相似文献   

19.
A preparation of (1′R,2′S,3′R,4′S)‐1‐(2′,3′,4′‐trihydroxycyclopent‐1′‐yl)‐lH‐cytosine (5′‐norcarbodine, 3 ) has formally been achieved in 2 steps from (+)‐(1R,4S)‐4‐hydroxy‐2‐cyclopenten‐1‐yl acetate ( 4 ) and cytosine. The L‐like enantiomer of 3 (that is, 6 ) is also reported using the enantiomer of 4 (that is, 7 ). In evalu ating 3 and 6 for antiviral potential against a number of viruses, compound 3 was found to have activity towards Epstein‐Barr virus (EBV).  相似文献   

20.
New synthetic approaches to 4,8‐dimethyl‐5′‐(N‐pyridiniummethyl)‐4′,5′‐dihydropsoralens and 4,8‐dimemyl‐5′‐(N‐aminomethyl)‐4′,5′‐dihydropsoralens are described. The 5′‐halomethyl‐4′,5′‐dihydro‐psoralen precursors are formed by electrophilic ring closures of 4,8‐dimethyl‐6‐allyl‐7‐hydroxycoumarin. The ring‐closure reactions may also be applied to the synthesis of 5′‐halomethyl‐4‐methyl‐4′,5′‐dihydroangelicins. The compounds are potential therapeutic agents for improved psoralen ultraviolet A radiation treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号