首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Zhou J  Guo C  Xu B 《J Phys Condens Matter》2012,24(16):164209
Electron transport behaviors of single molecular junctions are very sensitive to the atomic scale molecule-metal electrode contact interfaces, which have been difficult to control. We used a modified scanning probe microscope-break junction technique (SPM-BJT) to control the dynamics of the contacts and simultaneously monitor both the conductance and force. First, by fitting the measured data into a modified multiple tunneling barrier model, the static contact resistances, corresponding to the different contact conformations of single alkanedithiol and alkanediamine molecular junctions, were identified. Second, the changes of contact decay constant were measured under mechanical extensions of the molecular junctions, which helped to classify the different single molecular conductance sets into specific microscopic conformations of the molecule-electrode contacts. Third, by monitoring the changes of force and contact decay constant with the mechanical extensions, the changes of conductance were found to be caused by the changes of contact bond length and by the atomic reorganizations near the contact bond. This study provides a new insight into the understanding of the influences of contact conformations, especially the effect of changes of dynamic contact conformation on electron transport through single molecular junctions.  相似文献   

2.
Electronic transport properties of bismuth nanocontacts are analyzed using a low temperature scanning tunneling microscope. The subquantum steps observed in the conductance versus elongation curves give evidence of atomic rearrangements in the contact. The quantum nature of the conductance reveals itself through peaks in the conductance histograms. The shape of the curves at 77 K is described by a simple gliding mechanism for the contact evolution during elongation. The different behavior at 4 K suggests a transition from light to heavy charge carriers as the contact cross section is decreased.  相似文献   

3.
运用密度泛函理论与非平衡格林函数相结合的方法,对Si4团簇与Au (100)-3×3两电极以顶位-顶位、顶位-空位、空位-空位三种形貌相连构成的Au-Si4-Au纳米结点的拉伸过程进行第一性原理模拟,计算不同构型纳米结点在不同距离的电导和结合能.讨论耦合形貌、距离对结点电导的影响,结合能的计算表明三种不同耦合形貌结点存在稳定平衡结构,其平衡电导分别为0.71 G0、0.96 G0和2.44 G0,且在-1.2 V~1.2 V的电压范围内,三种不同耦合形貌结点稳定结构表现出类似金属的导电特性,其I-V关系都近似为直线.计算结果表明Si4团簇与电极的耦合形貌、两极距离对纳米结点电子输运有重要影响.  相似文献   

4.
We report first-principles calculations of conductance of carbon nanotubes between metallic electrodes. The electronic states are calculated using a numerical atomic orbital basis set in the framework of the density functional theory, and the conductance is calculated using the Green's function method. We show transmission spectra of carbon nanotubes connected to electrodes and reveal the contact effect of electrodes on the transport properties of nanotubes.  相似文献   

5.
Resonance Transport of Graphene Nanoribbon T-Shaped Junctions   总被引:1,自引:0,他引:1       下载免费PDF全文
We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction.  相似文献   

6.
Conductance quantization and magnetoresistance in magnetic point contacts   总被引:2,自引:0,他引:2  
We theoretically study the electron transport through a magnetic point contact (PC) with special attention given to the effect of an atomic scale domain wall (DW). The spin precession of a conduction electron is forbidden in such an atomic scale DW and the sequence of quantized conductances depends on the relative orientation of magnetizations between left and right electrodes. The magnetoresistance is strongly enhanced for the narrow PC and oscillates with the conductance.  相似文献   

7.
8.
Six kinds of Ni-A1 alloy nanowires are optimized by means of simulated annealing. The optimized structures show that the Ni-A1 alloy nanowires are helical shell structures that are wound by three atomic strands, which is very similar to the case with pure metallic nanowires. The densities of states (DOS), transmission function T( E), current-voltage (I - V) curves, and the conductance spectra of these alloy nanowires are also investigated. Our results indicate that the conductance spectra depend on the geometric structure properties and the ingredients of the alloy nanowires. We observe and study the nonlinear contribution to the I-V characteristics that are due to the quantum size effect and the impurity effect. The addition of Ni atoms decreases the conductance of the Ni-A1 alloy nanowire because the doping atom Ni change the electronic band structures and the charge density distribution. The interesting statistical results shed light on the physics of quantum transport at the nano-scale.  相似文献   

9.
Kondo transport properties through a Kondo-type quantum dot (QD) with a side-coupled triple-QD structure are systematically investigated by using the non-equilibrium Green's function method. We firstly derive the formulae of the current, the linear conductance, the transmission coefficient, and the local density of states. Then we carry out the analytical and numerical studies and some universal conductance properties are obtained. It is shown that the number of the conductance valleys is intrinsically determined by the side-coupled QDs and at most equal to the number of the QDs included in theside-coupled structure in the asymmetric limit. In the process of forming the conductance valleys, the side-coupled QD system plays the dominant role while the couplings between the Kondo-type QD and the side-coupled structure play the subsidiary and indispensable roles. To testify the validity of the universal conductance properties, another different kinds of side-coupled triple-QD structures are considered. It should be emphasized that these universal properties are applicable in understanding this kind of systems with arbitrary many-QD side structures.  相似文献   

10.
We demonstrate a self-contained methodology for predicting conductance histograms of atomic and molecular junctions. Fast classical molecular-dynamics simulations are combined with accurate density functional theory calculations predicting both quantum transport properties and molecular-dynamics force field parameters. The methodology is confronted with experiments on atomic-sized indium nanojunctions. Beside conductance histograms the distribution of individual channel transmission eigenvalues is also determined by fitting the superconducting subgap features in the I-V curves. The remarkable agreement in the evolution of the channel transmissions demonstrates that the simulated ruptures are able to reproduce a realistic statistical ensemble of contact configurations, whereas simulations on selected ideal geometries show strong deviations from the experimental observations.  相似文献   

11.
We investigate conductance through contacts created by pressing a hard tip, as used in scanning tunneling microscopy, against substrates. Two different substrates are considered, one a normal metal (Cu) and another a semi-metal (graphite). Our study involves the molecular dynamics simulations for the atomic structure during the growth of the contact, and selfconsistent field electronic structure calculations of deformed bodies. We develop a theory predicting the conductance variations as the tip approaches the surface. We offer an explanation for a quasiperiodic variation of conductance of the contact on the graphite surface, a behavior which is dramatically different from contacts on normal metals.  相似文献   

12.
We performed measurements at helium temperatures of the electronic transport in the linear regime in an InAs quantum wire in the presence of a charged tip of an atomic force microscope (AFM) at low electron concentration. We show that at certain concentration of electrons, only two closely placed quantum dots, both in the Coulomb blockade regime, govern conductance of the whole wire. Under this condition, two types of peculiarities—wobbling and splitting—arise in the behavior of the lines of the conductance peaks of Coulomb blockade. These peculiarities are measured in quantum-wire-based structures for the first time. We explain both peculiarities as an interplay of the conductance of two quantum dots present in the wire. Detailed modeling of wobbling behavior made in the framework of the orthodox theory of Coulomb blockade demonstrates good agreement with the obtained experimental data.  相似文献   

13.
We investigate atomic and electronic structures of boron nanotubes (BNTs) by using the density functional theory (DFT). The transport properties of BNTs with different diameters and chiralities are studied by the Keldysh nonequilibrium Green function (NEGF) method. It is found that the cohesive energies and conductances of BNTs decrease as their diameters decrease. It is more diffcult to form (N,0) tubes than (M,M) tubes when the diameters of the two kinds of tubes are comparable. However, the (N,0) tubes have a higher conductance than the (M,M) tubes. When the BNTs are connected to gold electrodes, the coupling between the BNTs and the electrodes will affect the transport properties of tubes significantly.  相似文献   

14.
Recent experimental characterizations have clearly visualized edge reconstructions in graphene nanoribbon and stable defective configurations. We have performed first principles calculations to evaluate the effects of atomic edge arrangement on the electronic transport properties of zigzag graphene nanoribbons (ZGNR). It is found that different conductance behaviors and variation of resonant energies are influenced by atomic reconstruction among three defective edge configurations. It is predicted that the conductance in edge reconstructed ZGNR is not a monotonic function of the increasing concentration of defects in size, but the topology and the distribution of defects should be taken into account. Our findings suggest that the ability of tuning the electronic transport of ZGNR could be improved through edge reconstruction activated by energetic particle irradiation.  相似文献   

15.
We present a first-principles study of the structure and quantum electronic conductance of junctions consisting of two crossed (5,5) single-walled carbon nanotubes. The structures are determined by constrained minimization of total energy at a given force between the two tubes, simulating the effects of substrate-tube attraction or an applied force. We find that the intertube contact distance is very sensitive to the applied force in the range of 0--10 nN. The intertube conductance is sizable for realistic deformation expected from substrate interaction. The results explain the recent transport data on crossed nanotubes and show that these systems may be potentially useful as electromechanical devices.  相似文献   

16.
17.
A Schottky diode with InAs dots in the intrinsic GaAs region was used to investigate perpendicular tunneling (in growth direction) through InAs quantum dots (QDs). At forward bias conditions electrons tunnel from the ohmic back contact into the metal Schottky gate. Peaks appear in the differential conductance when a QD level comes into resonance with the Fermi-level of the n-doped region. The observed tunneling features are attributed to electron transport through the s- and p-shell of the InAs islands. In our in-plane tunneling experiments the islands were embedded in the channel region of an n-doped GaAs/AlGaAs HEMT-structure. In order to study tunneling through single InAs islands, a quantum point contact was defined by lithography with an atomic force microscope and subsequent wet-chemical etching. In contrast to unpatterned devices sharp peaks appear in the IV characteristic of our samples reflecting the transport of electrons through the p-shell of a single InAs QD.  相似文献   

18.
We investigate the influence of electromagnetic fluctuations on quantum transport in a two-dimensional electron gas. We calculate the conductance of a quantum point contact under the influence of transport and gate-voltage fluctuations at finite temperature, using a generalized Landauer-Büttiker approach. The fluctuations are described by a suitable bath of bosons. In contrast to fluctuations of the gate-voltage, transport voltage fluctuations can completely block the electron transport at T = 0. This blockade is lifted as a result of finite temperature of the electrons in the Fermi reservoirs and also of the coupled bosons. In a typical experiment, these two temperatures need not to be the same. We show that the temperature of the coupled bosons limits the accuracy of the conductance quantization of a quantum point contact to a few percent.  相似文献   

19.
We analyze transport of magnetization in insulating systems described by a spin Hamiltonian. The magnetization current through a quasi-one-dimensional magnetic wire of finite length suspended between two bulk magnets is determined by the spin conductance which remains finite in the ballistic limit due to contact resistance. For ferromagnetic systems, magnetization transport can be viewed as transmission of magnons, and the spin conductance depends on the temperature T. For antiferromagnetic isotropic spin-1/2 chains, the spin conductance is quantized in units of order (gmu(B))(2)/h at T=0. Magnetization currents produce an electric field and, hence, can be measured directly. For magnetization transport in electric fields, phenomena analogous to the Hall effect emerge.  相似文献   

20.
The purpose of this work is to fabricate ribbon-like InGaAs and InAsP wires embedded in InP ridge structures and investigate their transport properties. The InP ridge structures that contain the wires are selectively grown by chemical beam epitaxy (CBE) on pre-patterned InP substrates. To optimize the growth and micro-fabrication processes for electronic transport, we explore the Ohmic contact resistance, the electron density, and the mobility as a function of the wire width using standard transport and Shubnikov–de Haas measurements. At low temperatures the ridge structures reveal reproducible mesoscopic conductance fluctuations. We also fabricate ridge structures with submicron gate electrodes that exhibit non-leaky gating and good pinch-off characteristics acceptable for device operation. Using such wrap gate electrodes, we demonstrate that the wires can be split to form quantum dots evidenced by Coulomb blockade oscillations in transport measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号