首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

2.
A straightforward method of synthesis of heteroleptic tin (II) alkoxides stabilized by one intramolecular coordination bond was developed. Addition of one equivalent of dimethylamino ethanol to diamide Sn(N(SiMe3)2)2 (5) yields alkoxy-amido derivative Sn(OCH2CH2NMe2)(N(SiMe3)2) (2). Further addition of alcohol leads to corresponding heteroleptic dialkoxides Sn(OCH2CH2NMe2)(OR) (R = Me (6), Et (7), iPr (8), tBu (9), Ph (10)). Catalytic activity of tin (II) compounds in polyurethane formation was tested.  相似文献   

3.
DNA-binding and DNA-photocleavage properties of two Ru(II) complexes, [Ru(L1)(dppz)2](PF6)4 (1) and [Ru(L2)(dppz)2](PF6)4 (2) (L1 = 5,5′-di(1-(triethylammonio)methyl)-2,2′-dipyridyl cation; L2 = 5,5′-di(1-(tributylammonio)methyl)-2,2′-dipyridyl cation; dppz = dipyrido[3,2-a:2′,3′-c]phenazine, have been investigated. Experimental results show that the DNA-binding affinity of complex 1 is greater than that of 2, both complexes emit luminescence in aqueous solution, either alone or in the presence of DNA, complex 1 can bind to DNA in an intercalative mode while 2 most likely interacts with DNA in a partial intercalation fashion, and complex 2 serves as a better candidate for enantioselective binding to CT-DNA compared with 1. Moreover, complex 1 reveals higher efficient DNA cleavage activity than 2, during which supercoiled DNA is converted to nicked DNA with both complexes. Theoretical calculations for the two complexes have been carried out applying the density functional theory (DFT) method at the level of the B3LYP/LanL2DZ basis set. The calculated results can reasonably explain the obtained experimental trends in the DNA-binding affinities and binding constants (Kb) of these complexes.  相似文献   

4.
Two structurally related flexible imidazolyl ligands, bis(N-imidazolyl)methane (L1) and 1,4-bis(N-imidazolyl)butane (L2), were reacted with Cu(II), Co(II) and Ni(II) salts of aliphatic/aromatic dicarboxylic acids resulting in the formation of a number of novel metal–organic coordination architectures, [CuB2(ox)2(L1)2(H2O)2] · 4H2O (1) (ox = oxalate), [Cu(pdc)(L2)1.5] · 4H2O (2, pdc = pyridine-2,6-dicarboxylate), [Co(L)2(H2O)2](tp) · 4H2O (3, tp = terephthalate), [Ni(L1)2(H2O)2](ip) · 5H2O (4, ip = isophthalate), [Cu2(L1)4(H2O)4](tp)2 · 7H2O (5), [Co(mal)(L1)(H2O)] · 0.5MeOH (6, mal = malonate), [Co(pdc)(L1)(H2O)] (7). All the complexes have been structurally characterized by X-ray diffraction analysis. The different coordination modes of the dicarboxylate anions, due to their chain length, rigidity and diimidazolyl functionality, lead to a wide range of different coordination structures. The coordination polymers exhibit 1D single chain, ladder, 2D sheet and 2D network structures. The aliphatic and aromatic dicarboxylates can adopt chelating μ2 and chelating-bridging μ3 coordination modes, or act as uncoordinated counter anions. The central metal ions are coordinated in N2O4, N4O2, N2O3 and N3O3 fashions, depending on the ancillary ligands. The topology of 1 gives rise to macrocycles which are connected through hydrogen bonds to form 1D chains, whereas compound 2 exhibits a 1D polymeric ladder in which the carboxylate acts as a pincer ligand. Compounds 35 show doubly bridged 1D chains, and the dicarboxylate groups are not coordinated but form 2D corrugated sheets with water molecules intercalated between the cationic layers. Compound 6 has a 2D network sheet structure in which each metal ion links three neighboring Co atoms by the bis(N-imidazolyl)methane ligand. The cobalt compound 7, with a 2D polymeric double sheet structure, is built from pincer carboxylate (pdc) and 1,4-bis(N-imidazolyl)methane ligands.  相似文献   

5.
Two neutral ligands, L1 · 2H2O and L2 · H2O, and seven complexes, [Cu(pmb)2(L1)] (1), [Cu(pmb)2(L2)] (2), [Cu(Ac)2(L2)] · 4H2O (3), [Cu(4-aba)2(L2)] (4), [Ag(4-ts)(L1)(H2O)] (5), [Ag2(epes)2(L1)] · 2H2O (6), [Ag(1,5-nds)0.5(L2)] · 0.5C2H5OH · H2O (7) [where L1 = 1,1′-(1,4-butanediyl)bis(2-methylbenzimidazole); L2 = 1,1′-(1,4-butanediyl)bis(2-ethylbenzimidazole), pmb = p-methoxybenzoate anion; Ac = acetate anion; 4-aba = 4-aminobenzoate anion; 4-ts = p-toluenesulfonate anion; epes = N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonate) anion; 1,5-nds = 1,5-naphthalenedisulfonate anion], have been synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction. The L1 and L2 ligands in compounds 17 act as bridging ligands, linking metal ions into chain structures. The chains in compounds 3, 4 and 6 interlace with each other by hydrogen bonds to generate 3D supramolecular structures. In compound 5, π–π interactions between adjacent L1 ligands hold the chains to a supramolecular layer. In compound 7, the sulfonate anions act as counterions in the framework. The thermal stabilities of 3, 6 and 7, and the luminescent properties for 57 in the solid states are also discussed.  相似文献   

6.
Five mononuclear complexes of manganese(II) of a group of the general formula, [MnL(NCS)2] where the Schiff base L = N,N′-bis[(pyridin-2-yl)ethylidene]ethane-1,2-diamine (L1), (1); N,N′-bis[(pyridin-2-yl)benzylidene]ethane-1,2-diamine (L2), (2); N,N′-bis[(pyridin-2-yl)methylidene]propane-1,2-diamine (L3), (3); N,N′-bis[(pyridin-2-yl)ethylidene]propane-1,2-diamine (L4), (4) and N,N′-bis[(pyridin-2-yl)benzylidene]propane-1,2-diamine (L5), (5) have been prepared. The syntheses have been achieved by reacting manganese chloride with the corresponding tetradentate Schiff bases in presence of thiocyanate in the molar ratio of 1:1:2. The complexes have been characterized by IR spectroscopy, elemental analysis and other physicochemical studies, including crystal structure determination of 1, 2 and 4. Structural studies reveal that the complexes 1, 2 and 4 adopt highly distorted octahedral geometry. The antibacterial activity of all the complexes and their respective Schiff bases has been tested against Gram(+) and Gram(−) bacteria.  相似文献   

7.
Two new reduced Schiff base ligands, [HL1 = 4-{2-[(pyridin-2-ylmethyl)-amino]-ethylimino}-pentan-2-one and HL2 = 4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical Schiff bases derived from 1:1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L1)]ClO4 (1), [Cu(L1)]ClO4 (2), [Ni(L2)]ClO4 (3), and [Cu(L2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L1 and L2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes. Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two CuII complexes (2 and 4) exhibit both irreversible reductive (CuII/CuI; Epc, −1.00 and −1.04 V) and oxidative (CuII/CuIII; Epa, +1.22 and +1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated CuI species for both the complexes are unstable and undergo disproportionation.  相似文献   

8.
The alkyl chain-linked diimidazolium (or dibenzimidazolium) salts, 1,1′-diethyl-4,4′-tetramethylene-diimidazolium-diiodide (L1H2·I2) and 1,1′-diethyl-3,3′-trimethylene-dibenzimidazolium-diiodide (L2H2·I2), and their silver(I) and copper(II) coordination polymers, [L1AgI]n (1) and [L2Cu2I4]n (2), have been prepared and characterized. Complex 1 is a 1D helical polymer generated by bidentated carbene ligands (L1) and Ag(I) atoms. The 1D polymer of 2 is formed by bidentated carbene ligands (L2) and coplanar quadrilateral Cu2I2 units. 3D supramolecular frameworks in the crystal packings of 1 and 2 are formed via intermolecular weak interactions, including C–H···π contacts, ππ interactions and C–H···I hydrogen bonds.  相似文献   

9.
A new family of three-legged piano stool structured organometallic compounds containing the fragment η5-cyclopentadienyl-ruthenium(II)/iron(II) has been synthesized to evaluate the existence of electronic metal to ligand charge transfer upon coordination of the novel benzodithiophene ligands (BDT), benzo[1,2-b;4,3-b′]dithiophen-2-carbonitrile (L1) and benzo[1,2-b;4,3-b′]dithiophen-2′nitro-2-carbonitrile (L2). All the compounds were characterized by 1H, 13C, 31P NMR, IR and UV-Vis. spectroscopies and their electrochemistry studied by cyclic voltammetry. The X-ray structures of [Ru(η5-C5H5)(PPh3)2(NCC10H5S2)][PF6] (1Ru), [Ru(η5-C5H5)(PPh3)2(NCC10H5S2)][CF3SO3] (1Ru), [Ru(η5-C5H5)(DPPE)(NCC10H5S2)][PF6] 2Ru and [Fe(η5-C5H5)(DPPE)(NCC10H5S2)][PF6] (2Fe) were determined by X-ray diffraction showing centric crystallization on groups and P21/n, respectively.Quadratic hyperpolarizabilities (β) of some of the complexes (2Fe, 2Ru and 3Fe) have been determined by hyper-Rayleigh scattering (HRS) measurements at a fundamental wavelength of 1500 nm, to minimize the probability of fluorescence due to two-photon absorption and to reduce the effect of resonance enhancement, in order to estimate static β values.  相似文献   

10.
A comparative investigation of the coordination behaviour of the 17-membered, N3O2-donor macrocycle, 1,12,15-triaza-3,4:9,10-dibenzo-5,8-dioxacycloheptadecane, L, with the soft metal ions Ag(I), Cd(II), Hg(II), and Pd(II) is reported. The X-ray structures of 12 complexes have been determined and a range of structural types, including both mononuclear and dinuclear species, shown to occur. In particular cases the effect of anion variation on the resulting structures has been investigated; L reacts with AgX (X = NO3, ClO4, PF6, OTf and CN) to yield related 2:2 (metal:ligand) complexes of types [Ag2L2(NO3)2] (1), [Ag2L2](ClO4)2 · 2DMF (2), [Ag2L2](PF6)2 · 2DMF (3), [Ag2L2](OTf)2 (4) and [Ag2L2(μ-CN)][Ag(CN)2] · H2O (5). In all five complexes the ether oxygens of each ring are unbound. In 1–4 the macrocycles are present in sandwich-like arrangements that shield the dinuclear silver centres, with each silver bonded to two nitrogen donors from one L and one nitrogen from a second L. A Ag···Ag contact is present between each metal centre such that both centres can be described as showing distorted tetrahedral geometries. In the case of 5 a rare single μ2-κC:κC symmetrically bridging two-electron-donating cyano bridge links silver ions [Ag···Ag distance, 2.7437(10) Å]; the macrocyclic ligands are orientated away from the dinuclear metal centres. In contrast to the behaviour of silver, reaction of cadmium(II) perchlorate with L resulted in a mononuclear sandwich-like complex of type [CdL2](ClO4)2 · CH3CN (6). Again, the ether oxygens do not coordinate, with each L binding to the cadmium centre only via its three nitrogen donors in a facial arrangement such that a distorted octahedral coordination geometry is attained. Reaction of L with HgX2 (X = ClO4, SCN and I) yielded the monomeric species [HgL(ClO4)2] (7), [HgL(SCN)2]·CH3CN (8) and [Hg2L2](HgI4)2 · 2L (9), in which all five donors of L are bound to the respective mercury centres. However, reaction of L with Hg(NO3)2 in dichloromethane/methanol gave a mononuclear sandwich-like complex [HgL2](NO3)2 · 2CH3OH (10) without anion coordination. Reaction of K2PdCl4 and Pd(NO3)2 with L yielded the 1:1 complexes [PdLCl]Cl · H2O (11) and [PdL(NO3)]NO3 · CH3OH (12), respectively, in which the metal is bound to three nitrogen donors from L along with the corresponding chloride or nitrate anion. Each palladium adopts a distorted square-planar coordination geometry; once again the ether oxygens are not coordinated.  相似文献   

11.
Four complexes: [Bu2(L1)SnOSn(L1)Bu2]2 (1), [Bu2(L2)SnOSn(L2)Bu2]2 (2), [Bu2(L3)SnOSn(L3)Bu2]2 (3), and [Bu2(L4)SnOSn(L4)Bu2]2 (4), (HL1 = 2-(4-methylbenzoyl)benzoic acid, HL2 = 2-(2,4-diethylbenzoyl)benzoic acid, HL3 = 2-(4-chlorobenzoyl)benzoic acid, HL4 = 2-(4-isopropylbenzoyl)benzoic acid) have been prepared and structurally characterized by means of elemental analysis and vibrational, 1H NMR and FT-IR spectroscopies. The crystal structures of all complexes have been determined by X-ray crystallography. Three distannoxane rings are present to the dimeric tetraorganodistannoxane of planar ladder arrangement. Each structure is centro-symmetric and features a central rhombus Sn2O2 unit with two additional tin atoms linked at the O atoms. Complex 1 exhibited good antibacterial and antitumor activities and have a potential to be used as drugs.  相似文献   

12.
Nickel and copper complexes containing 1,3,5-benzenetricarboxylic acid, with a combination of selected N-donor ligands and Schiff bases, of the composition Ni3(bimz)6(btc)2 · 12H2O (1), Ni3(btz)9(btc)2 · 12H2O (2), Ni2(L1)(btc) · 7H2O (3), Ni3(L2)2(Hbtc) · 9H2O (4), Ni2(L3)(btc) · 4H2O (5), Cu2(L4)(btc) · 7H2O (6), [Cu3(pmdien)3(btc)](ClO4)3 · 6H2O (7) and [Cu3(mdpta)3(btc)](ClO4)3 · 4H2O (8); H3btc = 1,3,5-benzenetricarboxylic acid, bimz = benzimidazole, btz = 1,2,3-benztriazole, L1 = 2-[(phenylimino)methyl]phenol, L2 = N,N′-bis-(salicylidene)propylenediamine, L3 = 2-{[(2-nitrophenyl)methylene]amino}phenol, L4 = 2-[(4-methoxy-phenylimino)methyl]phenol, pmdien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, mdpta = N,N-bis-(3-aminopropyl)methylamine, have been synthesized. The complexes have been studied by elemental analysis, IR, UV–Vis spectroscopies, magnetochemical and conductivity measurements and selected compounds also by thermal analysis. The crystal and molecular structure of complex 8 was solved. The complex is trinuclear with btc3−-bridge. The coordination polyhedron around each copper atom can be described as a distorted square with a CuON3 chromophore formed by one oxygen atom of carboxylate and three nitrogen atoms of mdpta. The magnetic properties of 8 have been studied in the 1.8–300 K temperature range revealing a very weak antiferromagnetic exchange interaction with J = −0.56 cm−1 for g = 2.13(9). The antimicrobial activities against selected strains of bacteria were evaluated. It was found that only complex 5 is able to inhibit the growth of Staphylococcus strains.  相似文献   

13.
Three copper(II) Schiff-base complexes, [Cu(L1)(H2O)](ClO4) (1), [Cu(L2)] (2) and [Cu(L3)] (3) have been synthesized and characterized [where HL1 = 1-(N-ortho-hydroxy-acetophenimine)-2-methyl-pyridine], H2L2 = N,N′-(2-hydroxy-propane-1,3-diyl)-bis-salicylideneimine and H2L3 = N,N′-(2,2-dimethyl-propane-1,3-diyl)-bis-salicylideneimine]. The structure of complex 1 has been determined by single crystal X-ray diffraction analysis. In complex 1, the copper(II) ion is coordinated to one oxygen atom and two nitrogen atoms of the tridentate Schiff-base ligand, HL1. The fourth coordination site of the central metal ion is occupied by the oxygen atom from a water molecule. All the complexes exhibit high catalytic activity in the oxidation reactions of a variety of olefins with tert-butyl-hydroperoxide in acetonitrile. The catalytic efficacy of the copper(II) complexes towards olefin oxidation reactions has been studied in different solvent media.  相似文献   

14.
New stable heteroleptic germanium(II) and tin(II) compounds [(SiMe3)2N-E14-OCH2CH2NMe2]n (E14 = Ge, n = 1 (1), Sn, n = 2 (2)) have been synthesized and their crystal structures have been determined by X-ray diffraction analysis. While compound 1 is monomer stabilized by intramolecular Ge ← N coordination, compound 2 is associated to dimer via intermolecular dative Sn ← O interactions.  相似文献   

15.
A novel versatile tridentate 3-(aminomethyl)naphthoquinone proligand, 3-[N-(2-pyridylmethyl)aminobenzyl]-2-hydroxy-1,4-naphthoquinone (HL), was obtained from the Mannich reaction of 2-hydroxy-1,4-naphthoquinone (Lawsone) with 2-aminomethylpyridine (amp) and benzaldehyde. The reactions of HL with CuCl2·2H2O yielded two novel dinuclear copper(II) complexes, [Cu(L)(H2O)(μ-Cl)Cu(L)Cl] (1b), [CuCl(L)(μ-Cl)Cu(amp)Cl] (2) and a polymeric compound, [Cu(L)Cl)]n (1a), whose relative yields were sensitive to temperature, reagents concentration and presence of base. The crystalline structures of 1b and 2 were determined by X-ray diffraction studies. The two copper atoms in complex 1b are connected by a single chloro bridge with a Cu?Cu separation of 4.1342(8) Å and Cu(1)–Cl(1)–Cu(2) angle of 109.31(4)°. In complex 2 the two copper atoms are held together by a chloro and a naphthalen-2-olate bridges [Cu(1)–Cl(2)–Cu(2) and Cu(1)–O(1)–Cu(2) angles being 83.31(3) and 109.70(9)°, respectively, and the Cu?Cu separation, 3.3476(9) Å]. As expected, variable-temperature magnetic susceptibility measurements of complex 1b showed weak antiferromagnetic intramolecular coupling between the copper(II) centers, with J = −5.7 cm−1, and evidenced for complex 2 strong antiferromagnetic coupling, with J ∼ −120 cm−1. Furthermore, the magnetic behaviour of compound 1a suggested an infinite 1D coordination polymeric structure in which the copper(II) centers are connected by Cl–Cu–Cl bridges. Solution data (UV–Vis spectroscopy and cyclic voltammetry) indicated structural changes of 2 and 1a in CH3CN, and evidenced conversion of polymer 1a into dimer 1b.  相似文献   

16.
The C,N-(trimethylsilyliminodiphenylphosphoranyl)silylmethylmetal complexes [Fe(L)2] (3), [Co(L)2] (4), [ZrCl3(L)]·0.83CH2Cl2 (5), [Fe(L)3] (6), [Fe(L′)2] (7) and [Co(L′)2] (8) have been prepared from the lithium compound Li[CH(SiMe2R)P(Ph)2NSiMe3] [1a, (R = Me) {≡ Li(L)}; 1b, (R = NEt2) {≡ Li(L′)}] and the appropriate metal chloride (or for 7, FeCl3). From Li[N(SiMe3)C(Ph)C(H)P(Ph)2NSiMe3] [≡ Li(L″)] (2), prepared in situ from Li(L) (1a) and PhCN, and CoCl2 there was obtained bis(3-trimethylsilylimino- diphenylphosphoranyl-2-phenyl-N-trimethylsilyl-1-azaallyl-N,N)cobalt(II) (9). These crystalline complexes 3-9 were characterised by their mass spectra, microanalyses, high spin magnetic moments (not 5) and for 5 multinuclear NMR solution spectra. The X-ray structure of 3 showed it to be a pseudotetrahedral bis(chelate), the iron atom at the spiro junction.  相似文献   

17.
Ruthenium complexes with bipyridine-analogous quaternized (N,C) bidentate ligands [RuL(bpy)2](PF6)2 (bpy = 2,2′-bipyridine, (1), L = L1 = N′-methyl-2,4′-bipyridinium; (2), L = L2 = N′-methyl-2,3′-bipyridinium) were synthesized and characterized. The structure of complex 2 was determined by the X-ray structure analysis. The 13C{1H} NMR spectroscopic and cyclic voltammetric studies indicate that the coordination modes of these ligands are quite different, that is, the C-coordinated rings of (N,C)-ligands in 1 and 2 are linked to ruthenium(II) with a pyridinium manner and a pyridinylidene one, respectively. The ligand-localized redox potentials of 1 and 2 also revealed the substantial difference in the electron donating ability of both ligands.  相似文献   

18.
The bi-functional carbamoyl methyl pyrazole ligands, C5H7N2CH2CONBu2 (L1), C5H7N2CH2CONiBu2 (L2), C3H3N2CH2CONBu2 (L3), C3H3N2CH2CONiBu2 (L4) and C5H7N2CH2CON(C8H17)2 (L5) were synthesized and characterized by spectroscopic and elemental analysis methods. The selected coordination chemistry of L1 to L4 with [UO2(NO3)2 · 6H2O], [La(NO3)3 · 6H2O] and [Ce(NO3)3 · 6H2O] has been evaluated. Structures for the compounds [UO2(NO3)2 C5H7N2CH2CONBu2] (6) [UO2(NO3)2 C5H7N2CH2CONiBu2] (7) and [Ce(NO3)3{C3H3N2CH2CONiBu2}2] (11) have been determined by single crystal X-ray diffraction methods. Preliminary extraction studies of the ligand L5 with U(VI) and Pu(IV) in tracer level showed an appreciable extraction for U(VI) and Pu(IV) up to 10 M HNO3 but not for Am(III). Thermal studies of the compounds 6 and 7 in air revealed that the ligands can be destroyed completely on incineration.  相似文献   

19.
A series of half-sandwich ruthenium(II) complexes containing κ3(N,N,N)-hydridotris(pyrazolyl)borate (κ3(N,N,N)-Tp) and the water-soluble phosphane 1,3,5-triaza-7-phosphaadamantane (PTA) [RuX{κ3(N,N,N)-Tp}(PPh3)2−n(PTA)n] (n = 2, X = Cl (1), n = 1, X = Cl (2), I (3), NCS (4), H (5)) and [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)L][PF6] (L = NCMe (6), PTA (7)) have been synthesized. Complexes containing 1-methyl-3,5-diaza-1-azonia-7-phosphaadamantane(m-PTA) triflate [RuCl{κ3(N,N,N)-Tp}(m-PTA)2][CF3SO3]2 (8) and [RuX{κ3(N,N,N)-Tp}(PPh3)(m-PTA)][CF3SO3] (X = Cl (9), H (10)) have been obtained by treatment, respectively, of complexes 1, 2 and 5 with methyl triflate. Single crystal X-ray diffraction analysis for complexes 1, 2 and 4 have been carried out. DNA binding properties by using a mobility shift assay and antimicrobial activity of selected complexes have been evaluated.  相似文献   

20.
Cis-[MLCl2] complexes of di-(2-pyridyl)pyrimidin-2-ylsulfanylmethane ligand (L), where M = Pd (1), and M = Pt (2) have been synthesized. Reaction of 1 with L in presence of Na[BF4] and hot acetonitrile produced the complex [PdL2](BF4)2 (3). Complexes 1-3 and ligand L have been characterized by elemental analyses, IR and NMR spectroscopy. Crystal structures of 1, 3 and L were determined by single crystal X-ray diffraction analyses, showing nonplanar structures with the pyridinic rings twisted around the bridging carbon and the ipso carbon bonds. 1 and 3 displayed a bidentate coordination of L to the palladium atom with the formation of six-membered chelate rings, where the local geometry at palladium atom was distorted square planar. In 3 the palladium atom was coordinated to two dipyridyl ligands through two of the pyridinic nitrogen atoms to form a cationic complex stabilized by two tetrafluoroborate counter-ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号