首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The group method of data handling (GMDH) method was used to estimate (vapour + liquid) equilibrium (VLE) for the binary systems of (tert-butanol + 2-ethy1-1-hexanol) and (n-butanol + 2-ethy1-1-hexanol). Using this method, a new model was proposed, which is suitable for predicting the VLE data. In this publication, the proposed model was ‘trained’ before requested predictions. The data set was divided into two parts: 70% were used as data for ‘training’ (either 10 or 12), and 30% were used as a test set, which were randomly extracted from the database (either 14 or 16). After the training on the input–output process, the predicted values were compared with those of experimental values in order to evaluate the performance of the GMDH neural network method. The model values showed a very good regression with the experimental results.  相似文献   

2.
《Fluid Phase Equilibria》2005,233(2):123-128
Isobaric vapor–liquid equilibria for the binary mixtures of tert-butanol (TBA) + 2-ethyl-1-hexanol and n-butanol (NBA) + 2-ethyl-1-hexanol were experimentally investigated at atmospheric pressure in the temperature range of 353.2–458.2 K. The raw experimental data were correlated using the UNIQUAC and NRTL models and used to estimate the interaction parameters between each pair of components in the systems. The experimental activity coefficients were obtained using the gas chromatographic method and compared with the calculated data obtained from these equilibrium models. The results show that UNIQUAC model gives better correlation than NRTL for these binary systems. The liquid–liquid extraction of TBA from aqueous solution using 2-ethyl-1-hexanol was demonstrated by simulation and the variation of separation factor of TBA at several temperatures was reported.  相似文献   

3.
(Liquid + liquid) equilibrium (LLE) data for (water + acetic acid + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range of (298.2 to 313.2) K. The UNIFAC model was used to predict the observed LLE data with a root-mean-square deviation value of 2.03%. A high degree of consistency of experimental data was obtained using the Othmer–Tobias correlation. The solubility of water in 2-ethyl-1-hexanol was measured at different temperatures.  相似文献   

4.
(Liquid + liquid) equilibrium data for (water + ethanol + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range (298.2 to 313.2) K. A type 1 (liquid + liquid) phase diagram was obtained for this ternary system. The experimental tie-line data for this system were correlated with the UNIQUAC solution model. The values of the interaction parameters between each pair of components in the system were obtained for the UNIQUAC model with the experimental results. The root mean square deviation between the observed and calculated mole per cent was 1.70%. The mutual solubility of 2-ethyl-1-hexanol and water was also investigated by the addition of ethanol at different temperatures.  相似文献   

5.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + 2-ethyl-1-hexanol) were determined at atmospheric pressure over the temperature range of (298.15 to 308.15) K. A type-1 LLE phase diagram was obtained for this ternary system. The LLE data were correlated fairly well with UNIQUAC model, indicating the reliability of the UNIQUAC equation for this ternary system. The average root mean square deviation between the observed and calculated mole fractions was 1.57%. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvent.  相似文献   

6.
《Fluid Phase Equilibria》2005,235(1):64-71
Consistent vapor–liquid equilibrium (VLE) data at 101.3 kPa have been determined for the ternary system isobutyl alcohol (IBA) + isobutyl acetate (IBAc) + 1-hexanol and two constituent binary systems: IBA + 1-hexanol and IBAc + 1-hexanol. The IBA + 1-hexanol system exhibits no deviation from ideal behaviour and IBAc + 1-hexanol system show lightly positive deviation from Raoult's law. The activity coefficients of the solutions were correlated with its composition by the Wilson, NRTL, UNIQUAC models. The ternary system is well predicted from binary interaction parameters. 1-Hexanol eliminates the IBA–IBAc binary azeotrope. However, the change of phase equilibria behaviour is small therefore this solvent is not an effective agent for that azeotrope mixture separation. In fact, the mean relative volatility on a solvent free basis is 1.28 (close to unity).  相似文献   

7.
The distillation of close boiling mixtures may be improved by adding a proper affinity solvent, and thereby creating an extractive distillation process. An example of a close boiling mixture that may be separated by extractive distillation is the mixture ethylbenzene/styrene. The ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) is a promising solvent to separate ethylbenzene and styrene by extractive distillation. In this study, (vapour + liquid) equilibrium data have been measured for the binary system (styrene + [EMIM][SCN]) over the pressure range of (3 to 20) kPa and binary and ternary (liquid + liquid) equilibrium data of the system (ethylbenzene + styrene + [EMIM][SCN]) at temperatures (313.2, 333.2 and 353.2) K. Due to the low solubility of ethylbenzene in [EMIM][SCN], it was not possible to measure accurately VLE data of the binary system (ethylbenzene + [EMIM][SCN]) and of the ternary system (ethylbenzene + styrene + [EMIM][SCN]) using the ebulliometer. Because previous work showed that the LLE selectivity is a good measure for the selectivity in VLE, we determined the selectivity with LLE. The selectivity of [EMIM][SCN] to styrene in LLE measurements ranges from 2.1 at high styrene raffinate purity to 2.6 at high ethylbenzene raffinate purity. The NRTL model can properly describe the experimental results. The rRMSD in temperature, pressure and mole fraction for the binary VLE data are respectively (0.1, 0.12 and 0.13)%. The rRMSD is only 0.7% in mole fraction for the LLE data.  相似文献   

8.
Densities and viscosities of binary liquid mixtures of (1-hexanol  + n -hexane, or cyclohexane, or benzene) have been measured at a number of mole fractions at T =  (303, 313, and 323) K. The excess molar volume VmEand apparent molar volume Vφhave been calculated from the density data. TheVmE anddVmE / dT for the system, (1-hexanol  + n -hexane) have been found negative, while those for the systems, (1-hexanol  +  cyclohexane) and (1-hexanol  +  benzene), were found to be positive. Excess viscosities ηEcalculated from viscosity data, have been found to be negative over the whole composition range at the temperatures studied for all the three systems. Volumetric and viscometric behaviours indicate that dispersion is the major force of interaction between the components in (1-hexanol  +  cyclohexane, or benzene), while inclusion of hydrocarbon chains into the interstices of polymolecular ring structures of alcohol formed by hydrogen bonding has been assumed to play a significant role apart from dispersion in the system (1-hexanol  + n -hexane). Thermodynamic parameters of activation for viscous flow have been calculated from the viscosity data at different temperatures and a possible explanation suggested.  相似文献   

9.
(Vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) data for the (carbon dioxide + 1-hexanol) system were measured at (293.15, 303.15, 313.15, 333.15, and 353.15) K. Phase behaviour measurements were made in a high-pressure visual cell with variable volume, based on the static-analytic method. The pressure range under investigation was between (0.6 and 14.49) MPa. The Soave–Redlich–Kwong (SRK) equation of state (EOS) with classical van der Waals mixing rules (two-parameters conventional mixing rule, 2PCMR), was used in a semi-predictive approach, in order to represent the complex phase behaviour (critical curve, LLV line, isothermal VLE, LLE, and VLLE) of the system. The topology of phase behaviour is reasonably well predicted.  相似文献   

10.
(Liquid + liquid) equilibrium data for the quaternary systems (water + tert-butanol + 1-butanol + KBr) and (water + tert-butanol + 1-butanol + MgCl2) were experimentally determined at T = 293.15 K and T = 313.15 K. For mixtures with KBr, the overall salt concentrations were 5 and 10 mass percent; for mixtures with MgCl2, the overall salt concentrations were 2 and 5 mass percent. The experimental results were used to estimate molecular interaction parameters for the NRTL activity coefficient model, using the Simplex minimization method and a concentration-based objective function. The correlation results are extremely satisfactory, with deviations in phase compositions below 1.7%.  相似文献   

11.
The experimental densities for the binary or ternary systems were determined at T = (298.15, 303.15, and 313.15) K. The ionic liquid methyl trioctylammonium bis(trifluoromethylsulfonyl)imide ([MOA]+[Tf2N]) was used for three of the five binary systems studied. The binary systems were ([MOA]+[Tf2N] + 2-propanol or 1-butanol or 2-butanol) and (1-butanol or 2-butanol + ethyl acetate). The ternary systems were {methyl trioctylammonium bis(trifluoromethylsulfonyl)imide + 2-propanol or 1-butanol or 2-butanol + ethyl acetate}. The binary and ternary excess molar volumes for the above systems were calculated from the experimental density values for each temperature. The Redlich–Kister smoothing polynomial was fitted to the binary excess molar volume data. Virial-Based Mixing Rules were used to correlate the binary excess molar volume data. The binary excess molar volume results showed both negative and positive values over the entire composition range for all the temperatures.The ternary excess molar volume data were successfully correlated with the Cibulka equation using the Redlich–Kister binary parameters.  相似文献   

12.
In this paper, isobaric (vapor + liquid) equilibrium (VLE) data for the binary system methanol + 2-butyl alcohol and the quaternary system methyl acetate + methanol + 2-butyl alcohol + 2-butyl acetate were determined at P = 101.33 kPa in a modified Rose still. The binary VLE data were found to be thermodynamic consistency by the Herrington method. The VLE data for the binary system were correlated by the Wilson and NRTL equations respectively, which were used to predict the VLE data of the quaternary system. The results showed that the Wilson and NRTL models matched well with the (vapor + liquid) phase equilibrium data. The deviations for the vapor-phase compositions and the equilibrium temperatures are reasonably small and the models are both suitable for these systems.  相似文献   

13.
Relative permittivity measurements were made on binary mixtures of (1,2-butanediol + 2-ethyl-1-hexanol) and (1,2-butanediol + 1,4-dioxane) for various concentrations at T = (298.2, 308.2, and 318.2) K. The molecular dipole moments were determined using Guggenheim–Debye method in the temperature range of (298.2 to 318.2) K. The variations of effective dipole moment and correlation factor, g, with the mole fraction in these materials were investigated using Kirkwood–Frohlich equation. The pure compounds showed a negative and small temperature coefficient of effective dipole moment. In order to obtain valuable information about heterogeneous interaction (interactions between the unlike molecules), the Kirkwood correlation factor, the Bruggeman dielectric factor and the excess permittivity were calculated. In addition, in order to predict the permittivity data of polar-apolar binary mixtures, five mixing rules were applied.  相似文献   

14.
(Liquid + liquid) equilibrium data for the quaternary systems (water + 2-propanol + 1-butanol + potassium bromide) and (water + 2-propanol + 1-butanol + magnesium chloride) were measured at T = 313.15 K and T = 353.15 K. The overall salt concentrations were 5 and 10 mass percent. Ternary (liquid + liquid) equilibrium data for the salt-free system (water + 2-propanol + 1-butanol) were also determined and found to be in good agreement with data from the literature. The NRTL model for the activity coefficient was used to correlate the data. New interaction parameters were estimated, using the Simplex minimization method and a concentration-based objective function. The results are very satisfactory, with root mean square deviations between experimental and calculated compositions of both phases being less than 0.5%.  相似文献   

15.
Coexistence curves of ( T, n), ( T, ϕ), and ( T, Ψ), where n, ϕ, and Ψ are the refractive index, volume fraction and effective volume fraction ψ = ϕ / {ϕ +  [(1   ϕ )ϕc / (1   ϕc )]}, respectively, for ternary microemulsion systems of {water  + n -nonane  +  sodium di(2-ethyl-1-hexyl)sulphosuccinate} have been determined at temperatures within 8.7 K above the critical temperature by measurements of refractive index at constant pressure and a constant molar ratio of water to sodium di(2-ethyl-1-hexyl)sulphosuccinate. The critical exponent β deduced from ( T,n ), ( T, ϕ), and ( T, Ψ) coexistence curves was found consistent with nonmonotonic crossover observed in all aqueous ionic solutions. The values of β deduced from the experimental data in the range of 1 K above Tcwere consistent with the universality class of three-dimensional Ising-like systems. The coexistence curves have been interpreted by a combination of the Wegner expansion and the rectilinear diameter. The present results indicate that the molar mass dependence of critical amplitudes, we proposed recently, is valid for microemulsion systems.  相似文献   

16.
Isothermal (vapour + liquid) equilibria (VLE) at 313.15 K have been measured for liquid 1-propanol + dibromomethane, or + bromochloromethane or + 1,2-dichloroethane or + 1-bromo-2-chloroethane mixtures.The VLE data were reduced using the Redlich–Kister equation taking into consideration the vapour phase imperfection in terms of the 2nd molar virial coefficients. The excess molar Gibbs free energies of all the studied mixtures are positive and ranging from 794 J · mol−1 for (1-propanol + bromochloromethane) and 1052 J · mol−1 for (1-propanol + 1-bromo-2-chloroethane), at x = 0.5. The experimental results are compared with modified UNIFAC predictions.  相似文献   

17.
《Fluid Phase Equilibria》2006,245(1):32-36
New experimental densities and surface tensions for n-nonane + 1-hexanol at 288.15, 298.15 and 308.15 K are reported. Densities were measured with an Anton Paar DMA 4500 densimeter, and surface tensions using a Lauda TVT2 automated tensiometer, which uses the principle of the pending drop volume. The experimental data of pure liquids and mixtures have been used to calculate excess molar volumes and surface tension deviations of n-nonane + 1-hexanol as a function of mole fractions. A comparative study of these properties together with those available in the literature for the n-alkane + 1-alkanol mixtures has been performed. In addition, the magnitude of these experimental quantities is discussed in terms of the nature and type of intermolecular interactions in binary mixtures.  相似文献   

18.
Densities, speeds of sound and refractive indices have been measured for (n -hexane  +  cyclohexane  +  1-hexanol) and its corresponding binaries atT =  298.15 K. In addition, ideal isentropic compressibilities were calculated from the speeds of sound, densities, and literature heat capacities and cubic expansion coefficients. The excess molar volumes and excess isentropic compressibilities, and deviations of the speed of sound and refractive index are correlated by polynomials and discussed.The Nitta–Chao model was used to estimate binary and ternary excess molar volumes, and several empirical equations were also used to calculate the excess and deviation properties.  相似文献   

19.
Isothermal (vapour + liquid) equilibrium data for the ternary mixtures 1-butanol + n-hexane + 1-chlorobutane and 2-butanol + n-hexane + 1-chlorobutane have been studied with a recirculating still at T = 298.15 K. The experimental data were satisfactorily checked for thermodynamic consistency using the method of van Ness. Activity coefficients and excess Gibbs function have been correlated with the Wilson equation. The GE values obtained for the two ternary systems are very similar.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号