首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The micro-hydrodynamic method is applid to the calculation of the molecular transport in narrow channels in case of capillary condensation, at the flow anisotropy resulted from the potential of the wall surface and/or of boundary vapor and fluid phases. The mechanisms of molecular transport in the one-phase and two-phase fluid flows as a dependence of fluid density and adsorption potential of channel walls are discussed.  相似文献   

2.
Primary electroviscous effect for a dilute suspension of porous spheres with fixed volumetric charge density is investigated theoretically. In the absence of flow, the electrical potential and solution charge density are assumed to satisfy the linearized Poisson-Boltzmann equation. With incorporation of the electrical body force, the Brinkman equation and the Stokes equation are used to govern the fluid flow inside and outside a sphere. The theory is formulated by assuming weak deviation of the charge cloud from its equilibrium state. However, the electrical body force is not restricted to be small compared to the viscous force in the fluid momentum equation. The results show that the double layer distortion is increased with increasing particle permeability, thereby enhancing the relative importance of its stress contribution. Nonetheless, the intrinsic viscosity remains a decreasing function of permeability, similar to the case of uncharged particles.  相似文献   

3.
Molecular dynamics simulations of chain molecules are used to elucidate physical phenomena involved in flows of dense immiscible fluids in nanochannels. We first consider a force driven flow in which the channel walls are homogeneous and wetting to one fluid and nonwetting to the other fluid. The coating of the walls by the wetting fluid provides a fluctuating surface that confines the flow of the nonwetting fluid. The resulting dissipation yields stationary Poiseuille-like flows in contrast to the accelerating nature of flow in the absence of the coating. We then consider walls consisting of patches whose wetting preferences to a fluid alternate along the walls. In the resulting flow, the immiscible components exhibit periodic structures in their velocity fields such that the crests are located at the wettability steps in contrast to the behavior of a single fluid for which the crest occurs in the wetting region. We demonstrate that for a single fluid, the modulated velocity field scales with the size of the chain molecules.  相似文献   

4.
Microfluidics has evolved as a major technological platform for biotechnology, material science and related fields. In virtually all of the areas of application, the flowing matrix is an isotropic fluid. However, replacing the typically isotropic fluid with an anisotropic liquid crystal opens up avenues beyond the viscous-dominated isotropic microfluidics. Especially, the material anisotropy of the flowing LC matrix and the consequent incorporation of topological constraints within the microfluidic device offer smart capabilities ranging from tunable flow-shaping to flexible micro-cargo concepts. The key to such capabilities lies in exploiting the possible topological constraints offered by the microfluidic confinement. As an example, we shall demonstrate how long-range ordering and consequent anisotropy in liquid crystals (LCs) could be utilised to devise a novel route to guided transport of microscopic cargo on ‘soft rails’, i.e. topological defect lines (disclinations). We create, position and navigate disclination lines within the LC matrix by tuning the coupling between flow and LC orientation. As model cargo elements, we have used isolated or self-assembled chains of colloidal particles, and demonstrated the broader capability of this method by transporting aqueous droplets on the defect lines. Topological constraints in combination with flow-director coupling thus endow LC microfluidics with features distinct from its isotropic counterparts.  相似文献   

5.
Molecular dynamics simulations were performed for electro‐osmotic flow (EOF) confined in a polyelectrolyte‐grafted nanochannel under variable grafting density and normal electric field. With decreasing the value of the normal electric field, the brush undergoes a collapse transition, and the ion distribution is changed significantly. The brush thickness increases on increasing the grafting density at positive and weak negative electric fields, whereas a reduced brush thickness is observed at strong negative electric field. Our results further reveal that the flow velocity is not only dependent on conformational transition of the brush but also related to the cation and anion distributions. At low grafting density, the EOF is almost completely quenched at high electric field strength due to strong surface friction between ions and walls. For the case of very dense grafting, the flow velocity is influenced weakly within the brush when varying the grafting density. Additionally, a bidirectional flow occurs at an intermediate electric field. The investigation on fluid flux indicates that the fluid flux is insensitive to the grafting density, when the normal electric field is removed. For nonzero normal electric fields, a significant change in the fluid flux is observed at low grafting densities. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

6.
The behavior of a fluid inside a closed narrow slit between solid walls is examined on the basis of the density functional theory. It is shown that the constraint of constant number of molecules leads to interesting effects which are absent when the slit is open and in contact with a reservoir. If the slit walls are identical, the density profiles at low temperatures or at high average densities rhoav of the fluid molecules in the slit have a sharp maximum in the middle of the slit, the value of the density at maximum being comparable to that of a liquid. The density of fluid at the walls is in this case comparable to the density of a vapor phase. At high temperatures or at low rhoav the fluid density in the middle of the slit is of the same order of magnitude as at the walls. For nonidentical walls the density maximum is shifted towards the wall with a stronger wall-fluid interaction. The transition between the two types (with and without the sharp maximum) of density profiles with the change of temperature in the slit occurs in a narrow range of temperatures, this range being larger for narrower slits. The pressures which the fluid exerts on the walls as well as the forces per unit area arising due to stresses in the sidewalls of the system can decrease with increasing rhoav. Such a behavior is not possible for homogeneous systems and can be explained by analyzing the fluid density at the walls when rhoav increases. The normal and transversal components of the pressure tensor were calculated as functions of the distance from the wall using the equation of hydrostatic equilibrium and direct calculation of the forces between molecules, respectively. The normal component decreases with increasing distance near the wall in contrast to the normal component near the liquid-vapor interface reported previously in the literature. The behavior of the transverse component does not depend on the fluid-solid interaction and is comparable to that for a liquid-vapor interface.  相似文献   

7.
The steady diffusioosmotic flows of an electrolyte solution along a charged plane wall and in a capillary channel between two identical parallel charged plates generated by an imposed tangential concentration gradient are theoretically investigated. The plane walls may have either a constant surface potential or a constant surface charge density. The electrical double layers adjacent to the charged walls may have an arbitrary thickness and their electrostatic potential distributions are determined by the Poisson-Boltzmann equation. Solving a modified Navier-Stokes equation with the constraint of no net electric current arising from the cocurrent diffusion, electric migration, and diffusioosmotic convection of the electrolyte ions, the macroscopic electric field and the fluid velocity along the tangential direction induced by the imposed electrolyte concentration gradient are obtained semianalytically as a function of the lateral position in a self-consistent way. The direction of the diffusioosmotic flow relative to the concentration gradient is determined by the combination of the zeta potential (or surface charge density) of the wall, the properties of the electrolyte solution, and other relevant factors. For a given concentration gradient of an electrolyte along a plane wall, the magnitude of fluid velocity at a position in general increases with an increase in its electrokinetic distance from the wall, but there are exceptions. The effect of the lateral distribution of the induced tangential electric field and the relaxation effect in the double layer on the diffusioosmotic flow are found to be very significant.  相似文献   

8.
9.
A steady plane flow of an anisotropically polarizable liquid in a channel with nonparallel walls was considered. One of the walls was grounded, and the other was under a high electric potential. The polarization anisotropy was described in terms of a unit vector whose direction was determined by a relaxation equation. The dependence of the polarization of the liquid on the strength of the electric field and the anisotropy vector was specified using an equilibrium relation. Such a model can describe, for example, a suspension of anisotropically polarizable particles in a highly insulating liquid. The velocity, pressure, polarization, anisotropy vector, and electric field distributions in the liquid were determined and investigated. It was shown that, at some critical Reynolds number, backflows are initiated near the channel walls. The dependence of the critical Reynolds number on the diverging angle of the channel and on the properties of a liquid in a strong electric field was determined. The applied electric field increases the critical Reynolds number, which provides a means of controlling the regime of the considered flow using electrical methods.  相似文献   

10.
An extended nonequilibrium molecular dynamics technique has been developed to investigate the transport properties of pressure-driven fluid flow in thin nanoporous membranes. Our simulation technique allows the simulation of the pressure-driven permeation of liquids through membranes while keeping a constant driving pressure using fluctuating walls. The flow of argon in the liquid state was simulated on applying an external pressure difference of 2.4x10(6) Pa through the slitlike and cylindrical pores. The volume flux and velocity distribution in the membrane pores were examined as a function of pore size, along with the interaction with the pore walls, and these were compared with values estimated using the Hagen-Poiseuille flow. The calculated velocity strongly depends on the strength of the interaction between the fluid and the atoms in the wall when the pore size is approximately<20sigma. The calculated volume flux also shows a dependence on the interaction between the fluid and the atoms in the wall. The Hagen-Poiseuille law overestimates or underestimates the flux depending on the interaction. From the analysis of calculated results, a good linear correlation between the density of the fluid in the membrane pores and the deviation of the flux estimated from the Hagen-Poiseuille flow was found. This suggests that the flux deviation in nanopore from the Hagen-Poiseuille flow can be predicted based on the fluid density in the pores.  相似文献   

11.
We have studied the microscopic structure, thermodynamics of adsorption, and phase behavior of Lennard-Jones fluid in slitlike pores with walls modified due to preadsorption of chain molecules. The chain species are grafted at the walls by terminating segments. Our theoretical considerations are based on a density functional approach in the semigrand canonical ensemble. The applied constraint refers to the constant number of grafted chain molecules in the pore without restriction of the number of chains at each of the walls. We have observed capillary condensation of Lennard-Jones fluid combined with the change of the distribution of chains from nonsymmetric to symmetric with respect to the pore walls. The phase diagrams of the model are analyzed in detail, dependent on the pore width, length of chains, and grafted density.  相似文献   

12.
Polymer solutions subject to pressure driven flow and in nanoscale slit pores are systematically investigated using the dissipative particle dynamics approach. The authors investigated the effect of molecular weight, polymer concentration, and flow rate on the profiles across the channel of the fluid and polymer velocities, polymer density, and the three components of the polymers radius of gyration. They found that the mean streaming fluid velocity decreases as the polymer molecular weight and/or polymer concentration is increased, and that the deviation of the velocity profile from the parabolic profile is accentuated with increase in polymer molecular weight or concentration. They also found that the distribution of polymers conformation is highly anisotropic and nonuniform across the channel. The polymer density profile is also found to be nonuniform, exhibiting a local minimum in the center plane followed by two symmetric peaks. They found a migration of the polymer chains either from or toward the walls. For relatively long chains, as compared to the thickness of the slit, a migration toward the walls is observed. However, for relatively short chains, a migration away from the walls is observed.  相似文献   

13.
We use grand canonical transition-matrix Monte Carlo and discontinuous molecular dynamics simulations to generate precise thermodynamic and kinetic data for the equilibrium hard-sphere fluid confined between smooth hard walls. These simulations show that the pronounced inhomogeneous structuring of the fluid normal to the confining walls, often the primary focus of density functional theory studies, has a negligible effect on many of its average properties over a surprisingly broad range of conditions. We present one consequence of this insensitivity to confinement: a simple analytical equation relating the average density of the confined fluid to that of the bulk fluid with equal activity. Nontrivial implications of confinement for average fluid properties do emerge in this system, but only when the fluid is both (i) dense and (ii) confined to a gap smaller than approximately three particle diameters. For this limited set of conditions, we find that "in-phase" oscillatory deviations in excess entropy and self-diffusivity (relative to the behavior of the bulk fluid at the same average density) occur as a function of gap size. These paired thermodynamic/kinetic deviations from bulk behavior appear to reflect the geometric packing frustration that arises when the confined space cannot naturally accommodate an integer number of particle layers.  相似文献   

14.
A theoretical study is presented for the steady diffusioosmotic flow of an electrolyte solution in a fine capillary slit with each of its inside walls coated with a layer of polyelectrolytes generated by an imposed tangential concentration gradient. In this solvent-permeable and ion-penetrable surface charge layer, idealized polyelectrolyte segments are assumed to be distributed at a uniform density. The electric double layer and the surface charge layer may have arbitrary thicknesses relative to the gap width between the slit walls. The Poisson-Boltzmann equation and a modified Navier-Stokes/Brinkman equation are solved numerically to obtain the electrostatic potential, dynamic pressure, tangentially induced electric field, and fluid velocity as functions of the lateral position in the slit in a self-consistent way, with the constraint of no net electric current arising from the cocurrent diffusion, electric migration, and diffusioosmotic convection of the electrolyte ions. The existence of the surface charge layers can lead to a diffusioosmotic flow quite different from that in a capillary with bare walls. The effect of the lateral distribution of the induced tangential electric field and the relaxation effect due to ionic convection in the slit on the diffusioosmotic flow are found to be very significant in practical situations.  相似文献   

15.
The density profiles in a fluid interacting with the two identical solid walls of a closed long slit were calculated for wide ranges of the number of fluid molecules in the slit and temperature by employing density functional theory in the local density approximation. Two potentials, the van der Waals and the Lennard-Jones, were considered for the fluid-fluid and the fluid-walls interactions. It was shown that the density profile corresponding to the stable state of the fluid considerably changes its shape with increasing average density (rhoav) of the fluid inside the slit, the details of changes being dependent on the selected potential. For the van der Waals potential, a single temperature-dependent critical value rhosb of rhoav was identified, such that for rhoav < rhosb the stable state of the system is described by a symmetric density profile, whereas for rhoav >/= rhosb it is described by an asymmetric one. This transition constitutes a spontaneous symmetry breaking of the fluid density distribution in a closed slit with identical walls. For rhoav >/= rhosb, a metastable state, described by a symmetric density profile, was present in addition to the stable asymmetric one. The shape of the symmetric profile changed suddenly at a value rhoc-h > rhosb of the average density, the density rhoc-h being almost independent of temperature. Because of the shapes of the profiles before and after the transformation, this transition was named cup-hill transformation. At the transition point, the density of the fluid near the walls decreased suddenly from a liquid-like value becoming comparable with the density of a gaseous phase, and the density in the middle of the slit increased suddenly from a gaseous-like value becoming on the order of the density of a liquid phase. For the Lennard-Jones potential, there are two temperature-dependent critical densities, rhosb1 and rhosb2, such that the stable density profile is asymmetric (symmetry breaking occurs) for rhosb1 相似文献   

16.
17.
This article applies the density functional theory to confined liquid crystals, comprised of ellipsoidal shaped particles interacting through the hard Gaussian overlap (HGO) potential. The extended restricted orientation model proposed by Moradi and co-workers [J. Phys.: Condens. Matter 17, 5625 (2005)] is used to study the surface anchoring. The excess free energy is calculated as a functional expansion of density around a reference homogeneous fluid. The pair direct correlation function (DCF) of a homogeneous HGO fluid is approximated, based on the optimized sum of Percus-Yevick and Roth DCF for hard spheres; the anisotropy introduced by means of the closest approach parameter, the expression proposed by Marko [Physica B 392, 242 (2007)] for DCF of HGO, and hard ellipsoids were used. In this study we extend an our previous work [Phys. Rev. E 72, 061706 (2005)] on the anchoring behavior of hard particle liquid crystal model, by studying the effect of changing the particle-substrate contact function instead of hard needle-wall potentials. We use the two particle-surface potentials: the HGO-sphere and the HGO-surface potentials. The average number density and order parameter profiles of a confined HGO fluid are obtained using the two particle-wall potentials. For bulk isotropic liquid, the results are in agreement with the Monte Carlo simulation of Barmes and Cleaver [Phys. Rev. E 71, 021705 (2005)]. Also, for the bulk nematic phase, the theory gives the correct density profile and order parameter between the walls.  相似文献   

18.
The theories available for the yield stress of magnetic suspensions imply that their transition from a quasi-elastic to a fluid behavior is related to the disruption of chainlike or bulk columnlike aggregates connecting opposite boundaries of a region containing a suspension. It is commonly assumed that aggregates are rigidly bonded to bounding walls. However, a slip of aggregates on the walls is frequently observed. In this work, the transition from an elastic shear strain of a magnetic suspension to its viscous flow due to the slip of aggregates on channel walls is theoretically studied. The value of the corresponding yield stress is estimated.  相似文献   

19.
To elucidate the nature of processes involved in electrically driven particle aggregation in steady fields, flows near a charged spherical colloidal particle next to an electrode were studied. Electrical body forces in diffuse layers near the electrode and the particle surface drive an axisymmetric flow with two components. One is electroosmotic flow (EOF) driven by the action of the applied field on the equilibrium diffuse charge layer near the particle. The other is electrohydrodynamic (EHD) flow arising from the action of the applied field on charge induced in the electrode polarization layer. The EOF component is proportional to the current density and the particle surface (zeta) potential, whereas our scaling analysis shows that the EHD component scales as the product of the current density and applied potential. Under certain conditions, both flows are directed toward the particle, and a superposition of flows from two nearby particles provides a mechanism for aggregation. Analytical calculations of the two flow fields in the limits of infinitesimal double layers and slowly varying current indicate that the EOF and EHD flow are of comparable magnitude near the particle whereas in the far field the EHD flow along the electrode is predominant. Moreover, the dependence of EHD flow on the applied potential provides a possible explanation for the increased variability in aggregation velocities observed at higher field strengths.  相似文献   

20.
This study analytically examines the steady diffusioosmotic and electroosmotic flows of an electrolyte solution in a fine capillary slit with each of its inside walls covered by a layer of adsorbed polyelectrolytes. In this solvent-permeable and ion-penetrable surface charge layer, idealized polyelectrolyte segments are assumed to distribute at a uniform density. The electric double layer and the surface charge layer may have arbitrary thicknesses relative to the gap width between the slit walls. The electrostatic potential distribution on a cross section of the slit is obtained by solving the linearized Poisson–Boltzmann equation, which applies to the case of low potentials or low fixed-charge densities. Explicit formulas for the fluid velocity profile due to the imposed electrolyte concentration gradient or electric field through the slit are derived as the solution of a modified Navier–Stokes/Brinkman equation. The results demonstrate that the structure of the surface charge layer can lead to an augmented or a diminished electrokinetic flow (even a reversal in direction of the flow) relative to that in a capillary with bare walls, depending on the characteristics of the capillary, of the surface charge layer, and of the electrolyte solution. For the diffusioosmotic flow with an induced electric field, competition between electroosmosis and chemiosmosis can result in more than one reversal in direction of the flow over a range of the Donnan potential of the adsorbed polyelectrolyte in the capillary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号