首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin-up and spin-down are regarded as different fluids. By studying the propagation of Alfvén wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.  相似文献   

2.
We study the spin-polarized transport induced by photoirradiation in zigzag silicene nanosystem, based on tight-binding approach, Green's function method and Landauer–Büttiker formula. By applying strong circular polarized light, silicene nanosystem can be transformed into a quantum Hall insulator, where the spin-down subband is gapped while the spin-up subband persists gapless edge state. Therefore, the dc conductance is dominated by the spin-up electrons, and the spin polarization can reach almost 100% around the Fermi energy. The spatial-resolved local density of states confirm that the spin-up electrons transport at two edges of the nanosystem in opposite current directions. Furthermore, because of the topological origin of the edge state, the spin-polarized transport is very robust against the size change of the nanosystem.  相似文献   

3.
In the present work, the influence of Rashba effect on bound polaron in a quantum pseudodot is studied. Using the Lee–Low–Pines unitary transformation method and the Pekar type variational procedure, we have derived an expression for the bound polaron ground state energy. The ground state energy as functions of the wave vector, the electron–phonon coupling strength, and quantum confinement size is obtained by considering different Coulomb bound potentials. It is found that (i) the ground state energy is decreased with raising the Coulomb bound potential, the electron–phonon coupling strength, and quantum confinement size. (ii) The ground state energy increases when the wave vector is increasing. (iii) The ground state energy splits into two branches (spin-up and spin-down) due to the Rashba effect.  相似文献   

4.
The hamiltonian for two 2-dimensional layers of electrons (neglecting spin), is similar to that of a free electron gas with the role of spin-up and spin-down electrons being played by electrons in two layers. An anomalous ground state analogous to the spiral spin density wave (SSDW) state presents intriguing possibilities.  相似文献   

5.
The thermal ionization equilibrium in plasmas is considered at pressures for which the electron gas is partially to considerably degenerate. An ionization equation is derived which takes into account that i) the electron energies are distributed according to Fermi statistics and ii) the (heavy) ions and atoms obey Boltzmann statistics which is valid up to pressures at which the wave functions of the atoms begin to overlap. A comparison of the quantum statistical and Saha ionization equations indicates that the degeneracy effects in the electron gas suppress somewhat the ionization. It is remarkable that the Saha equation describes, approximately, the thermal ionization equilibrium up to the critical pressure at which the wave functions of the atoms begin to overlap (e.g., up to P ~ 103 Bar and P ~ 106 Bar in the cases of Cs and H plasmas, respectively), although the electrons are noticeably degenerate.  相似文献   

6.
We study Andreev tunneling through a ferromagnet/quantum-dot (QD)/superconductor system. By usingnonequilibrum Green function method, the averaged occupation of electrons in QD and the Andreev tunneling currentare studied. Comparing to the norma-metal/quantum-dot/superconductor, the system shows significant changes: (i)The averaged occupations of spin-up and spin-down electrons are not equal. (ii) With the increase of the polarizationof ferromagnetic lead, the Andreev reflection current decreases. (iii) However, even the ferromagnetic lead reaches fullpolarization, the averaged occupation of spin-down electrons is not zero. The physics of these changes is discussed.  相似文献   

7.
《Physics letters. A》2020,384(24):126607
We study spin-dependent electron transport properties of a thermally driven interacting quantum dot. When an external magnetic field is applied to the quantum dot, the effective transmissions of spin-up and spin-down electrons are separated from each other and have a perfect mirror symmetry with respect to the incident energy at a certain gate voltage. A pure spin current can be induced in the system and modulated by a magnetic field. Under certain magnetic field strengths, a larger pure spin current can be obtained at gate voltages with the values in a range, not just at a specific voltage. These results indicate that the system can be worked as a pure spin current generator.  相似文献   

8.
In this work, we carried out detailed investigation of a Cd1?xMnxTe/CdTe/Cd1?xMnxTe diluted magnetic semiconductor based quantum well. Our theoretical results are based on an accurate self-consistent resolution of the one-dimension Schrödinger and Poisson’s equations in the framework of the mean-field approximation for spin-up and spin-down orientations of carriers coupled via the sp–d exchange interaction. From the calculation of spin-dependent carrier densities for ferromagnetic and anti-ferromagnetic coupling, we evidence the spin-up and spin-down space separation for holes in quantum well for different values of band offsets. From deduced spin polarizations, we show that the CdTe region acts as a layer of spin rearrangement and spin reversal, respectively, in the ferromagnetic and anti-ferromagnetic coupling. The transmittance coefficients T+ and T? of injected spin-up and spin-down carriers are evaluated as a preliminary work to assess the spin-dependent currents in devices consisting of alternatively layers of non-magnetic and diluted magnetic semiconductors.  相似文献   

9.
Within a new perspective which includes the consideration of spin-up and spin-down electrons, a quantum-box approach is used to find a closed mathematical expression for the quantized electrical conductance of an imperfect point–metal contact. From this expression, both proper and improper fractions of the fundamental conductance quantum are obtained and discussed in the light of both resonant and off-resonant conduction states. Issues concerning Fermi energy and electrochemical potential are discussed. In addition, essential aspects related to the atom–lead coupling are examined; in particular, a tensor–dyadic formalism is introduced. Our results are found to be in excellent agreement with previous theoretical results and with experimental observations.  相似文献   

10.
The intrinsic localization of electrostatic wave energies in quantum semiconductor plasmas can be described by solitary pulses. The collision properties of these pulses are investigated. In the present study, the fundamental model includes the quantum term, degenerate pressure of the plasma species, and the electron/hole exchange–correlation effects. In cylindrical geometry, using the extended Poincaré–Lighthill–Kuo (PLK) method, the Korteweg–de Vries (KdV) equations and the analytical phase shifts after the collision of two soliton rings are derived. Typical values for GaSb and GaN semiconductors are used to estimate the basic features of soliton rings. It is found that the pulses of GaSb semiconductor carry more energies than the pulses of GaN semiconductor. In addition, the degenerate pressure terms of electrons and holes have strong impact on the phase shift. The present theory may be useful to analyze the collision of localized coherent electrostatic waves in quantum semiconductor plasmas.  相似文献   

11.
We demonstrate all-optical quantum interference injection and control of a ballistic pure spin current (without an accompanying charge current) in GaAs/AlGaAs quantum wells, consisting of spin-up electrons traveling in one direction and spin-down electrons traveling in the opposite direction. This current is generated through quantum interference of one- and two-photon absorption of approximately 100 fs phase-locked pulses that have orthogonal linear polarizations. We use a spatially resolved pump-probe technique to measure carrier movement of approximately 10 nm. Results agree with recent theoretical predictions.  相似文献   

12.
Electronic structure calculations based on density functional (DFT) theory within the generalized gradient approximation (GGA) for the Ti2CoGa Heusler compound have been performed using the self-consistent full-potential linearized augmented plane wave (FPLAPW) method. The electronic band structures and density of states of the Ti2CoGa compound show that the spin-up electrons are metallic, but the spin-down bands have a gap of 0.5 eV, resulting in stable half-metallic ferrimagnetic behavior with a magnetic moment of 2μB.  相似文献   

13.
We address the quantum capacitance of a bilayer graphene device in the presence of Rashba spin–orbit interaction (SOI) by applying external magnetic fields and interlayer biases. Quantum capacitance reflects the mixing of the spin-up and spin-down states of Landau levels and can be effectively modulated by the interlayer bias. The interplay between interlayer bias and Rashba SOI strongly affects magnetic oscillations. The typical beating pattern changes tuned by Rashba SOI strength, interlayer bias energy, and temperature are examined as well.  相似文献   

14.
Using solutions of the discrete Bethe ansatz equations, we study in detail the quantum impurity problem of a spin-down fermion immersed into a fully ploarized spin-up Fermi sea with weak attraction. We prove that this impurity fermion in the one-dimensional (1D) fermionic medium behaves like a polaron for weak attraction. However, as the attraction grows, the spin-down fermion binds with one spin-up fermion from the fully-polarized medium to form a tightly bound molecule. Thus it is seen that the system undergos a crossover from a mean field polaron-like nature into a mixture of excess fermions and a bosonic molecule as the attraction changes from weak attraction into strong attraction. This polaron-molecule crossover is universal in 1D many-body systems of interacting fermions. In a thermodynamic limit, we further study the relationship between the Fredholm equations for the 1D spin-1/2 Fermi gas with weakly repulsive and attractive delta-function interactions.  相似文献   

15.
李玉现 《中国物理快报》2008,25(10):3739-3741
Spin-dependent Andreev reflection and spin polarization through a diluted magnetic semiconductor quantum wire coupled to normal metallic and superconductor electrodes are investigated using scattering theory. When the spin-orbit coupling is considered, more Andreev conductance steps appear at the same Fermi energy. Magnetic semiconductor quantum wire separates the spin-up and spin-down electrons. The Fermi energy, at which different- spin-state electrons begin to separate, becomes lower due to the effect of the spin-orbit interaction. The spin filter effect can be measured more easily by investigating the Andreev conductance than by investigating the normal conductance.  相似文献   

16.
郑小宏  戴振翔  王贤龙  曾雉 《物理学报》2009,58(13):259-S265
通过第一性原理计算研究了具有锯齿状边沿并且具有反铁磁构型的单层石墨纳米带的自旋极化输运.研究发现,在中心散射区同一位置掺入单个B和N原子,尽管对整个体系磁矩的影响完全相同,但对两个自旋分量电流的影响却完全相反.掺B时,自旋向上的电流显著大于自旋向下的电流;而掺N时,自旋向下的电流显著大于自旋向上的电流.这是由于不管掺B还是掺N都将打破自旋简并,使得导带和价带中自旋向上的能级比自旋向下的能级更高.掺B引入空穴,使完全占据的价带变为部分占据,从而自旋向上的能级正好处于费米能级,使得电子透射能力更强、电流更大,而自旋向下的能级则离费米能级较远使电子透射的能力较弱.掺N则引入电子,使得原来全空的导带变为部分占据,从而费米能级穿过导带中自旋向下的能级,使得自旋向下的电子比自旋向上的电子透射能力更强. 关键词: 自旋极化输运 单层石墨纳米带 第一性原理 非平衡格林函数  相似文献   

17.
《Physics letters. A》2004,324(4):331-336
Based on one-dimensional quantum waveguide theory we study the symmetry of the spin-polarized transmission through an Aharonov–Bohm ring with a magnetic impurity, in which the spin-exchange interaction between an incident electron and the magnetic impurity leads to spin–flip scattering. It shows that for some special Fermi energies, both spin-up and spin-down transmission coefficients are symmetric under the flux reversal in the spin–flip scattering process and the spin-polarized conductance also is symmetric. In above case, AB oscillations of spin-down transmission and reflection are perfectly identical. The effect of the exchange interaction strength and Fermi wave vector on transmission behavior of spin-state electrons is examined.  相似文献   

18.
肖美霞  梁尤平  陈玉琴  刘萌 《物理学报》2016,65(2):23101-023101
采用基于密度泛函理论的第一性原理模拟计算,研究了在应变作用下两层半氢化氮化镓纳米薄膜的电学和磁学性质.没有表面修饰的两层氮化镓纳米薄膜的原子结构为类石墨结构,并具有间接能隙.然而,当两层氮化镓纳米薄膜的一侧表面镓原子被氢化时,该纳米薄膜却依然保持纤锌矿结构,并且展示出铁磁性半导体特性.在应变作用下,两层半氢化氮化镓纳米薄膜的能隙可进行有效调控,并且它将会由半导体性质可转变为半金属性质或金属性质.这主要是由于应变对表面氮原子的键间交互影响和p-p轨道直接交互影响之间协调作用的结果.该研究成果为实现低维半导体纳米材料的多样化提供了有效的调控手段,为其应用于新型电子纳米器件和自旋电子器件提供重要的理论指导.  相似文献   

19.
Dirac equation for electrons in a potential created by quantum well is solved and the three sets of the eigen-functions are obtained. In each set the wavefunction is at the same time the eigen-function of one of the three spin operators, which do not commute with each other, but do commute with the Dirac Hamiltonian. This means that the eigen-functions of Dirac equation describe three independent spin eigen-states. The energy spectrum of electrons confined by the rectangular quantum well is calculated for each of these spin states at the values of energies relevant for solid state physics. It is shown that the standard Rashba spin splitting takes place in one of such states only. In another one, 2D electron subbands remain spin degenerate, and for the third one the spin splitting is anisotropic for different directions of 2D wave vector.  相似文献   

20.
《Physics letters. A》2001,291(6):453-458
We investigate spin-dependent tunneling times in a hybrid semimagnetic/semiconductor heterostructure with a single paramagnetic layer under the influence of both electric and magnetic fields. We find that the tunneling times for electrons strongly depend on the incident energy, the magnitude of the external fields, and on their spin orientation. The results indicate that the tunneling time for spin-up electrons can be longer than that for spin-down ones by up to several orders of magnitude. This implies that tunneling for spin-up and spin-down electrons are separated in time within the same heterostructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号