首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary The displacement of chloride ligands from -cis-chloro-aquoethylenediamine-N,N-diacetatocobalt(III) in nonacidic aqueous solutions was followed conductimetrically at 30–45° and the products of aquation were characterised by conductance, spectral and ion-exchange techniques. The rate constants for aquation in aqueous media and in 1 : 4 v : v mixed solvents at 25° are: 4.0 × 10–5 s–1 in H2O, 2.71 × 10–5 s–1 in MeOH : H2O, 2.74 × 10–5 s–1 in EtOH: H2,O and 2.58 × 10–5 s–1 n in Me2CO : H2O. The corresponding H* and S* values have also been evaluated. Solvent polarity has a marked influence on the rate of chloride ion release. The aquation rate constants and the activation parameters have been correlated with solvent parameters,e.g. D, Y-values, Dimroth's ET and Kosower's Z-values and, based on these correlations, a dissociative interchange (Id) mechanism is proposed rather than dissociative as observed for some other cobalt(III) complexes.Senior author.  相似文献   

2.
Summary The interaction of palladium(II) with the bidentate kojic acid compound, HL, was studied. The pkL and pkc (11) values 7.65±0.15 and 5.22±0.10 were determined in aqueous media in the presence of different solvents (dioxane, MeOH, EtOH, Me2CO and DMF) at variable concentrations (20–50% v/v solvent/H2O). A reddish brown square planar 11 solid palladium kojic acid complex, PdLCl·H2O, was prepared and characterized.  相似文献   

3.
The complexation reactions between Mg2+,Ca2+,Sr2+ and Ba2+ metal cations with macrocyclic ligand, dicyclohexano-18-crown-6 (DCH18C6) were studied in methanol (MeOH)–water (H2O) binary mixtures at different temperatures using conductometric method . In all cases, DCH18C6 forms 1:1 complexes with these metal cations. The values of stability constants of complexes which were obtained from conductometric data show that the stability of complexes is affected by the nature and composition of the mixed solvents. While the variation of stability constants of DCH18C6-Sr 2+ and DCH18C6-Ba2+versus the composition of MeOH–H2O mixed solvents is monotonic, an anomalous behavior was observed for variations of stability constants of DCH18C6-Mg2+ and DCH18C6-Ca2+ versus the composition of the mixed solvents. The values of thermodynamic parameters (ΔHc°, ΔSc°) for complexation reactions were obtained from temperature dependence of formation constants of complexes using the van’t Hoff plots. The results show that in most cases, the complexation reactions are enthalpy stabilized but entropy destabilized and the values of thermodynamic parameters are influenced by the nature and composition of the mixed solvents. The obtained results show that the order of selectivity of DCH18C6 ligand for metal cations in different concentrations of methanol in MeOH–H2O binary system is: Ba2+>Sr2+>Ca2+> Mg2+.  相似文献   

4.
Reaction of cis-[Mo(NCMe)2(CO)2(η5-L)][BF4] (L=C5H5 or C5Me5) with 1-acetoxybuta-1,3-diene gives the cationic complexes [Mo{η4-syn-s-cis-CH2CHCHCH(OAc)}(CO)2(η5-L)][BF4], which, on reaction with aqueous NaHCO3/CH2Cl2, afford good yields of the anti-aldehyde substituted complexes [Mo{η3-exo-anti-CH2CHCH(CHO)}(CO)2(η5-L)] 2 (L=C5Me5), 4 (L=C5H5)]. The corresponding η5-indenyl substituted complex 5 was prepared by protonation (HBF4·OEt2) of [Mo(η3-C3H5)(CO)2(η5-C9H7)] followed by addition of CH2=CHCH=CH(OAc) and hydrolysis (aq. NaHCO3/CH2Cl2). An X-ray crystallographic study of complex 2 confirmed the structure and showed that there is a contribution from a zwitterionic form involving donation of electron density from the molybdenum to the aldehyde carbonyl group. Treatment of 2 and 4, in methanol solution, with NaBH4 afforded the alcohols [Mo{η3-exo-anti-CH2CHCHCH2(OH)}(CO)2(η5-L)] [6 (L=C5H5), 8 (L=C5Me5)]; however, prolonged (30 h) reaction with NaBH4/MeOH surprisingly gave good yields of the methoxy-substituted complexes [Mo{η3-exo-anti-CH2CHCHCH2(OMe)}(CO)2(η5-L)] [7 (L=C5H5), 9 (L=C5Me5)], the structure of 7 being confirmed by single crystal X-ray crystallography. This methoxylation reaction can be explained by coordination of the hydroxyl group present in 6 and 8 onto B2H6 to form the potential leaving group HOBH3, which on ionisation affords [Mo(η4-exo-buta-1-3-diene)(CO)2(η5-L)]+ which is captured by reaction with OMe. Complex 8 is also formed in good yield on reaction of 2 with HBF4·OEt2 followed by treatment of the resulting cation [Mo{η4-exo-s-cis-syn-CH2CHCHCH(OH)}(CO)2(η5-C5Me5)][BF4] with Na[BH3CN]. Reaction of 4 with the Grignard reagents MeMgI, EtMgBr or PhMgCl afforded moderate yields of the alcohols [Mo{η3-exo-anti-CH2CHCHCH(OH)R}(CO)2(η5-C5H5)] [11 (R=Me), 12 (R=Et), 13 (R=Ph)]. Similarly, treatment of 2 with MeLi gave the corresponding alcohol 14. An attempt to carry out the Oppenauer oxidation [Al(OPr′)3/Me2CO] of 11 resulted in an elimination reaction and the formation of the η3-s-pentadienyl complex [Mo{η3-exo-anti-CH2CHCH(CHCH2)}(CO)2(η5-C5H5)], which was structurally identified by X-ray crystallography. Interestingly, oxidation of 6 with [Bu4nN][RuO4]/morpholine-N-oxide affords the aldehyde complex, 4 in good yield. Finally, reaction of 11 with [NO][BF4] followed by addition of Na2CO3 affords the fur-3-ene complex [Mo{η2-
(H)Me}(CO)(NO)(η5-C5H5)].  相似文献   

5.
Reactions of diiron complexes (E)[5-t-BuC5H3)Fe(CO)]2(-CO)2 [E = Me2Si (1), Me2SiSiMe2 (2), and Me2SiOSiMe2 (3)] with iodine in CHCl3 yielded diiodide complexes (E)[5-t-BuC5H3)Fe(CO)2I]2 [E=Me2Si (5), Me2SiSiMe2 (6), and Me2SiOSiMe2 (7)]. Like (1–3), complexes (5–7) also exists as mixtures of cis and trans isomers even though the Fe–Fe bond in (1–3) has been cleaved. When the pure isomers (1–3) reacted with iodine respectively in CHCl3, the cis isomers (1c–3c) yielded only the cis products (5c–7c), whereas the trans isomers (1t–3t) yielded only the trans isomers (5t–7t). This indicates that iodination of bridged diiron complexes is stereospecific. Similar treatment of trans-(Me2Si)[{5-t-(heptyl)C5H3}Fe(CO)]2(-CO)2 (4t) with iodine gave only the trans product (Me2Si)[{5-t-(heptyl)C5H3}Fe(CO)2I]2 (8t). The molecular structure of (5t) was determined by X-ray diffraction.  相似文献   

6.
Four different dimethyltin(IV) complexes of Schiff bases derived from 2-amino-3-hydroxypyridine and different substituted salicylaldehydes have been synthesized. The compounds, with the general formula [Me2Sn(2-OArCHNC5H3NO)], where Ar = –C6H3(5-CH3) [Me2SnL1], –C6H3(5-NO2) [Me2SnL2], –C6H2(3,5-Cl2) [Me2SnL3], and –C6H2(3,5-I2) [Me2SnL4], were characterized by IR, NMR (1H and 13C), mass spectroscopy and elemental analysis. Me2SnL3 was also characterized by X-ray diffraction analysis and shows a fivefold C2NO2 coordination with distorted square pyramidal geometry. H3C–Sn–CH3 angles in the complexes were calculated using Lockhart's equations with the 1J(117/119Sn–13C) and 2J(117/119Sn–1H) values (from the 1H-NMR and 13C-NMR spectra). The in vitro antibacterial and antifungal activities of dimethyltin(IV) complexes were also investigated.  相似文献   

7.
Conductances at 25.00°C are reported for the following systems: tetrabutylammonium bromide in dimethyl sulfoxide-acetone mixtures (Bu4NBr in Me2SO–Me2CO); tetraphenylphosphonium bromide (Ph4PBr) in water Me2SO, Me2CO, and in the mixtures H2O–Me2SO, Me2SO–Me2CO and Me2CO–H2O; Ph4PCl in Me2SO, Me2CO, H2O–Me2SO, and Me2SO–Me2CO; and tetrapropylammonium bromide (Pr4NBr) in Me2SO and Me2CO. The data were analyzed using the Fuoss 1978 equation which is based on the coupled equilibria: (unpaired ions)(solvent-separated pairs)(contact pairs). The conductimetric pairing constantK A =K R(l+K s) is the product of two factors:K R, which describes the first (diffusion controlled) equilibrium andK s=exp(–E s/kT), which describes the second (system-specific) equilibrium. Ions with overlapping cospheres (of diameterR) are defined as paired: their center-to-center distancer lies in the rangearR; contact pairs (r=a) are ions which have one ion of opposite charge as a nearest neighbor, all other nearest and next nearest neighbors being solvent molecules. The quantityE s is the difference in free energy between the states defined byr=R andr=a. For the Me2SO–Me2CO systems,E s is positive for solutions in Me2SO and decreases through zero to negative values as the fraction of the less polarizable acetone increases. For solutions in waterE s is also positive. On addition of Me2SO or Me2CO,E s initially increases, goes through a maximum, and then decreases to negative values as the fraction of the less polarizable component increases. The decrease is an electrostatic effect, common to all the systems. The initial increase inE s appears when the small water molecules surrounding solvent-separated pairs are replaced by organic molecules which have greater volumes than water.  相似文献   

8.
The reactions of the title compound, Me2Sn(S-SO3Na · H2O)2, with alkyliodides and trimethyltin chloride in an aqueous medium, as well as with dibenzo-18-crown-6 (DB-18-C-6) in acetone have been studied. The iodides RI (R = Me, Et) attack both of the tin—sulfur bonds to give dimethyltin diiodide and the respective disulfides, R2S2. Trimethyltin chloride enters an exchange reaction which involves sodium ions and affords Me2Sn(S-SO3SnMe3)2 as the reaction intermediate; the latter decomposes to ultimately give trimethyltin sulfate, dimethyltin thiosulfite, and elemental sulfur. An ionic complex, [Me2Sn(S-SO3)2]2 2–[Na(DB-18-C-6)(Me2CO)]+[Na(DB-18-C-6)(Me2CO)(H2O)]+, soluble in acetone and methylene chloride has been also synthesized, and its structure has been determined by means of X-ray techniques.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 962–966, May, 1993.  相似文献   

9.
Kinetics of heterolysis of 1-chloro-1-methylcyclopentane in MeOH, BuOH, cyclohexane, i-PrOH, t-BuOH, tert-C5H11OH, -butyrolactone, MeCN, PhCN, PhNO2, acetone, PhCOMe, cyclohexanone, and 1,2-dichloroethane at 25-50°C were studied by the verdazyl method. Correlation analysis of solvent effects on activation parameters of the reaction in 8 protic (additionally, AcOH and CF3CH2OH) and 8 aprotic solvents together and separately in either group of solvents was performed. In all the solvents studied, two H -S compensation effects were revealed.  相似文献   

10.
Salen type complexes, CuL, the corresponding tetrahydrosalen type complexes, Cu[H4]L, and N,N′-dimethylated tetrahydrosalen type complexes, Cu[H2Me2]L, were investigated using cyclic voltammetry, and electronic and ESR spectroscopy. In addition, the analogous copper(II) complexes with a derivative of the tetradentate ligand ‘salphen’ [salphen=H2salphen=N,N′-disalicylidene-1,2-diaminobenzene] were studied. Solutions of CuL, Cu[H4]L and Cu[H2Me2]L are air-stable at ambient temperature, except for the complex Cu(tBu, Me)[H4]salphen [H2(tBu, Me)[H4]salphen=N,N′-bis(2-hydroxy-3-tert-butyl-5-methylbenzyl)-1,2-diaminobenzene]. Cu(tBu, Me)[H4]salphen interacts with dioxygen and the ligand is oxidatively dehydrogenated (–CH2–NH–→–C=N–) to form Cu(tBu, Me)[H2]salphen and finally, in the presence of base, Cu(tBu, Me)salphen. X-ray structure analysis of Cu(tBu, Me)[H2Me2]salen confirms a slightly tetrahedrally distorted planar geometry of the CuN2O2 coordination core. The complexes were subjected to spectrophotometric titration with pyridine, to determine the equilibrium constants for adduct formation. It was found that the metal center in the complexes studied is only of weak Lewis acidity. In dichlormethane, the oxidation Cu(II)/Cu(III) is quasireversible for the CuL type complexes, but irreversible for the Cu[H4]L and Cu[H2Me2]L type. A poorly defined wave was observed for the irreversible reduction Cu(II)/Cu(I) at potentials less than −1.0 V. The ESR spectra of CuL at both 77 K and room temperature reveal that very well resolved lines can be attributed to the interaction of an unpaired electron spin with the copper nuclear spin, 14N donor nuclei and to a distant interaction with two equivalent protons [ACu(iso)≈253 MHz, AN(iso)≈43 MHz, AN(iso)≈20 MHz]. These protons are attached to the carbon atoms adjacent to the 14N nuclei. In contrast to CuL, the number of lines in the spectra of the complexes Cu[H4]L and Cu[H2Me2]L is greatly reduced. At room temperature, only a quintet with a considerably smaller nitrogen shf splitting constant [AN(iso)≈27 MHz] is observed. Both factors, planarity and conjugation, are thus essential for the observation of distant hydrogen shf splitting in CuL. Due to the C=N bond hydrogenation, the coordination polyhedra of the complexes Cu[H4]L and Cu[H2Me2]L is more flexible and more sensitive to ligand modification than that of CuL. The electron-withdrawing effect of the phenyl ring of the phenylenediamine bridge is reflected in a reduction of the copper hyperfine coupling constants in Cu(tBu, Me)[H4]salphen and Cu(tBu, Me)[H2Me2]salphen complexes [ACu(iso)≈215 MHz].  相似文献   

11.
The complexes of Tl+, Pb2+ and Cd2+ cations with the macrocyclic ligand, dicyclohexano-18-crown-6\linebreak(DC18C6) were studied in water/methanol (H2+O/MeOH), water/1-propanol (H2+O/1-PrOH), water/acetonitrile (H2+O/AN), water/dimethylformamide (H2+O/DMF), dimethylformamide/acetonitrile (DMF/AN), dimethylformamide/methanol (DMF/MeOH), dimethylformamide/1-propanol (DMF/1-PrOH) and dimethylformamide/nitromethane (DMF/NM) mixed solvents at 22 °C using differential pulse polarography (DPP), square wave polarography and conductometry. In general, the stability of the complexes was found to decrease with increasing concentration of water in aqueous/non-aqueous mixed solvents with an inverse relationship between the stability constants of the complexes and the concentration of DMF in non-aqueous mixed solvents. The results show that the change in stability of DC18C6.Tl+, vs the composition of solvent in DMF/AN and DMF/NM mixed solvents is apparently different from that in DMF/MeOH and DMF/1-PrOH mixed solvents. While the variation of stability constants of the DC18C6.Tl+ and DC18C6.Pb2+ complexes vs the composition of H2+O/AN mixed solvents is monotonic, an anomalous behavior was observed for variations of log Kf vs the composition of H2+O/1-PrOH and H2+O/MeOH mixed solvents. The selectivity order of the DC18C6 ligand for the cations was found to be Pb2+ > Tl+ > Cd2+.  相似文献   

12.
The metallo-phosphaalkenes (η5-C5Me5)(CO)2FeP=C(R)(SiMe3) (Ia: R = SiMe3, Ib: R = Ph) and MeO2C---CC---CO2Me undergo a dipolar [3+2]-cycloaddition to afford the metallo-heterocycles [(η5-C5Me5)(CO)

=C(R)SiMe3] (IIIa,b) with exocyclic P=C double bonds.  相似文献   

13.
Summary Thermogravimetry (TG) and Me2CO adsorption measurements for flexible porous crystalline coordination polymers with 2-dimensional (2-D) frameworks, {[Co(NCS)2(3-pia)2]·4Me2CO}n (1⊃4Me2CO, 3-pia=N-(3-pyridyl)isonicotinamide), were carried out. Taking advantages of capability of hydrogen bonding of amide groups for a dynamic properties, 1⊃4Me2CO show crystal (non-porous)-to-crystal (porous) structural rearrangement in Me2CO adsorption/desorption processes. The activation energy for the Me2CO desorption process of 1⊃4Me2CO was obtained using Flynn-Wall-Ozawa’s (FWO) method. The Me2CO adsorption isotherms on 1 have a threshold pressure (Pth) for abrupt accommodation of Me2CO molecules, which is regarded as the equilibrium pressure for the inclusion reaction of Me2CO  相似文献   

14.
The complexation reactions between Mg2+, Ca2+, Sr2+ and Ba2+ cations with the macrocyclic ligand, 18-Crown-6 (l8C6) in water–methanol (MeOH) binary systems as well as the complexation reactions between Ca2+ and Sr2+ cations with 18C6 in water–ethanol (EtOH) binary mixtures have been studied at different temperatures using conductometric method. The conductance data show that the stoichiometry of all the complexes is 1:1. It was found that the stability of 18C6 complexes with Mg2+, Ca2+, Sr2+ and Ba2+ cations is sensitive to solvent composition and in all cases, a non-linear behaviour was observed for the variation of log K f of the complexes versus the composition of the mixed solvents. In some cases, the stability order is changed with changing the composition of the mixed solvents. The selectivity order of 18C6 for the metal cations in pure methanol is: Ba2+ > Sr2+ > Ca2+ > Mg2+. The values of thermodynamic parameters (Δ H c ° and Δ S c °) for formation of 18C6–Mg2+, 18C6–Ca2+, 18C6–Sr2+ and 18C6–Ba2+complexes were obtained from temperature dependence of the stability constants. The obtained results show that the values of (Δ H c ° and Δ S c °) for formation of these complexes are quite sensitive to the nature and composition of the mixed solvent, but they do not vary monotonically with the solvent composition.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

15.
A mixture ofendo-H andexo-H isomers (1a and1b) of the (4-C5Me5H)PtCl2 complex was prepared by the reaction of K2PtCl4 with C5Me5H in MeOH. The mixture of isomers reacts with CpTl in the presence of TiBF4 to give a novel complex, [(4-C5Me5H)Pt(5-C5H5)]+BF4 , as a mixture ofendo-H- andexo-H-isomers (2a and2b). The data of1H and13C NMR spectroscopy of the resulting complexes are discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 514–517, March, 1994.  相似文献   

16.
Solutions of iodobenzene diacetate in CH3CN, AcOH, MeOH/H2O and MeOH (with or without base) were analyzed by electrospray ionization mass spectrometry (ESI-MS) and tandem mass spectrometry (ESI-MS/MS). The major species in CH3CN, AcOH and MeOH/H2O solutions are [PhI(OAc)2Na]+, [PhI(OAc)2K]+, [PhI]+, [PhIOAc]+, [PhIOH]+, [PhIO2Ac]+, [PhIO2H]+ and the dimer [Ph2I2O2Ac]+. On the other hand, MeOH solutions showed [PhIOMe]+ as the most abundant species. A similar result was observed adding 2, 3 or 4 equiv of KOH to MeOH solutions. However, in the presence of 10 equiv of KOH, probably occurs the formation of a polymeric material. Similarly, ESI-MS analysis of the MeOH solution of iodobenzene bis(trifluoroacetate) showed a pattern analogous to that observed for the corresponding solutions of PhI(OAc)2. However, ESI-MS spectral data of PhI(O2CCF3)2 of CH3CN suggests that the main species in solutions is iodosylbenzene, which contrasts with the results obtained for PhI(OAc)2.  相似文献   

17.
Abstract

The UV irradiation of (η5-C5Me5)Re(CO)3 in the presence of 1,2,4,5-C6Cl4H2 and 1,3,5-C6Cl3H3 (λ = 350 nm, hexane solution) effected intramolecular C—Cl activation, generating the complexes trans-(η5-C5Me5)Re(CO)2(2,4,5-C6Cl5-nHn)Cl, ((1), n = 2; (2), n = 3), respectively. Complex (1) dissolved in polar organic solvents produces, an equilibrium mixture with its cis isomer. The reaction of (1) with AgBF4, in acetonitrile, led to formation of the cationic complex [cis-(η5-C5Me5)Re(CO)2(2,4,5-C6Cl3H2)(MeCN)]+. The tetramethylfulvene complex (η6-C5Me4CH2)Re(CO)2(2,4,5-C6Cl3H2) (3) was obtained by reacting the cationic complex with the fluorinating agent Et3N′3HF.  相似文献   

18.
The reaction of C5H5Rh(CO)(PiPr3) (1] which is prepared from C5H5Rh(CO)2 and neat P1Pr3, with the nitriloxides 2-RC6H4CNO (R = H, Cl) leads to the formation of the metallaheterocycles C5H5(P1Pr3) ) (2, 3) in 90–95% yield. Compound 1 reacts with tosylazide to give the C,N-bound isocyanate complex C5 H5(PiPr3)Rh(η2-TosN=C=O) (6). Analogously, on treatment of C5Me5Co(CO)(PMe3) with phenylazide the phenylisocyanate derivative C5Me5(PMe3)Co(η2-PhN=C=O) (7) is formed. Protonation of 7 with CF3CO 2H affords the non-ionic carbamoylcobalt complex C5Me5(PMe3)Co[C(O)NHPh](O2CCF3) (8). The X-ray structural analysis of 2 reveals the presence of an almost planar heterocycle in which the two Rh-C distances differ by 0.045 Å  相似文献   

19.
The stereochemistry of S N2 and S N2 substitutions of the allylic mesyloxy group in mesylates of prostaglandin allylic epimeric 13- and 15-alcohols under the action of various nucleophiles (H2O, MeOH, AcOH, LiBr) was studied. The substitution accompanied by rearrangement occurs with moderate (1.4–1.6 : 1) syn-stereoselectivity with respect to the configuration of the mesyloxy group, which increases with decreasing temperature and depends only slightly on the nature of the nucleophile.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2510–2518, November, 2004.  相似文献   

20.
The reaction of RuTp(COD)Cl (1) with PPh2Pri and terminal alkynes HCCR (R=C6H5, C4H3S, C6H4OMe, Fc, C6H4Fc, C6H9) affords the neutral vinylidene complexes RuTp(PPh2Pri) (Cl)(=C=CHR) (2a2f) in high yields. These complexes do not react with MeOH to give methoxy carbene complexes of the type RuTp(PPh2Pri)(Cl)(=C(OMe)CH2R), but react with oxygen to yield the CO complex RuTp(PPh2R)(Cl)(CO) (3). The structures of 2b, 2f, and 3 have been determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号