首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a gas of interacting relativistic effective mesons (qualitatively, like those produced in a heavy-ion collision), regarded as an out-of-equilibrium statistical system. We suppose large occupation numbers, temperature somewhat below typical critical temperatures and the quasi-classical regime. At some initial time t0, let the gas be in a nonequilibrium state, with spatial inhomogeneities. The time evolution of the gas for t > t 0 is studied by a moment method, and appropriate long-time approximations, which could yield the approach to global thermal equilibrium, are discussed.  相似文献   

2.
A recent investigation of the possibility of having a -symmetric periodic potential in an optical lattice stimulated the urge to generalize non-hermitian quantum mechanics beyond the case of commutative space. We thus study non-hermitian quantum systems in non-commutative space as well as a -symmetric deformation of this space. Specifically, a -symmetric harmonic oscillator together with an iC(x 1+x 2) interaction are discussed in this space, and solutions are obtained. We show that in the deformed non-commutative space the Hamiltonian may or may not possess real eigenvalues, depending on the choice of the non-commutative parameters. However, it is shown that in standard non-commutative space, the iC(x 1+x 2) interaction generates only real eigenvalues despite the fact that the Hamiltonian is not -symmetric. A complex interacting anisotropic oscillator system also is discussed.  相似文献   

3.
An unparticle with scaling dimension has peculiar thermal properties due to its unique phase space structure. We find that the equation of state parameter , the ratio of pressure to energy density, is given by providing a new form of energy in our universe. In an expanding universe, the unparticle energy density evolves dramatically differently from that for photons. For , even if at a high decoupling temperature T D is very small, it is possible to have a large relic density at present photon temperature T γ 0, large enough to play the role of dark matter. We calculate T D and using photon–unparticle interactions for illustration.  相似文献   

4.
The generalized Bessel functions (GBF) are framed within the context of the representation Q(ω,m 0) of the three-dimensional Lie algebra . The analysis has been carried out by generalizing the formalism relevant to Bessel functions. New generating relations and identities involving various forms of GBF are obtained. Certain known results are also mentioned as special cases.Mathematics Subject Classifications (2000) 33C10, 33C80, 33E20.  相似文献   

5.
After deriving the projected stress tensor in cylindrical geometry for a fluid membrane described by the Helfrich Hamiltonian, we calculate the average force f exerted by a thermally fluctuating nanotubule of radius R , and its standard deviation f . We obtain f and f in terms of the internal membrane tension , the bending rigidity , the temperature k B T and a molecular cutoff . We find for f a shift ∼ 1/ with respect to the mean field behavior ∼ . We obtain ( f )2R ln(R/b) where b is a molecular length, f being typically small compared to f . Taking into account the difference between the internal tension and the actual mechanical tension applied to the membrane from which the tubule is drawn, we discuss the amplitude of the fluctuation-induced corrections to the average force. Our results, obtained in the harmonic approximation, hold for tubules with aspect ratio not larger than 200 , of radius significantly smaller than 100nm, that are connected to a large membrane reservoir, e.g., a giant vesicle.  相似文献   

6.
We study a class of finite dimensional quantum dynamical semigroups $\{\mathrm {e}^{t\mathcal{L}}\}_{t\geq0}$ whose generators $\mathcal{L}$ are sums of Lindbladians satisfying the detailed balance condition. Such semigroups arise in the weak coupling (van Hove) limit of Hamiltonian dynamical systems describing open quantum systems out of equilibrium. We prove a general entropic fluctuation theorem for this class of semigroups by relating the cumulant generating function of entropy transport to the spectrum of a family of deformations of the generator ${\mathcal{L}}$ . We show that, besides the celebrated Evans-Searles symmetry, this cumulant generating function also satisfies the translation symmetry recently discovered by Andrieux et al., and that in the linear regime near equilibrium these two symmetries yield Kubo’s and Onsager’s linear response relations.  相似文献   

7.
8.
Phase fluctuations of a d-wave superconducting order parameter are theoretically studied in the context of high-Tc cuprates. We consider an extended t-J model describing electrons in a layer which also contains long-range Coulomb interactions. The constraint of having at most singly occupied sites is enforced by an additional Hubbard term. The Heisenberg interaction is decoupled by a d-wave order parameter in the particle-particle channel. Assuming first that the equilibrium state has long-range phase order, the effective action is derived perturbatively for small fluctuations within a path integral formalism, in the presence of the Coulomb and Hubbard interaction terms. In a second step, a more general derivation of is performed in terms of a gradient expansion which only assumes that the gradients of the order parameter are small whereas the value of the phase may be large. We show that in the phase-only approximation the resulting reduces in leading order in the field gradients to the perturbative one which thus allows to treat also the case without long-range phase order or vortices. Our result generalizes previous expressions for to the case of interacting electrons, is explicitly gauge invariant, and avoids problematic singular gauge transformations.  相似文献   

9.
The thermodynamical concept of entropy was introduced by Clausius in 1865 in order to construct the exact differential dS = Q/T , where Q is the heat transfer and the absolute temperature T its integrating factor. A few years later, in the period 1872-1877, it was shown by Boltzmann that this quantity can be expressed in terms of the probabilities associated with the microscopic configurations of the system. We refer to this fundamental connection as the Boltzmann-Gibbs (BG) entropy, namely (in its discrete form) , where k is the Boltzmann constant, and {p i} the probabilities corresponding to the W microscopic configurations (hence ∑W i=1 p i = 1 . This entropic form, further discussed by Gibbs, von Neumann and Shannon, and constituting the basis of the celebrated BG statistical mechanics, is additive. Indeed, if we consider a system composed by any two probabilistically independent subsystems A and B (i.e., , we verify that . If a system is constituted by N equal elements which are either independent or quasi-independent (i.e., not too strongly correlated, in some specific nonlocal sense), this additivity guarantees SBG to be extensive in the thermodynamical sense, i.e., that in the N ≫ 1 limit. If, on the contrary, the correlations between the N elements are strong enough, then the extensivity of SBG is lost, being therefore incompatible with classical thermodynamics. In such a case, the many and precious relations described in textbooks of thermodynamics become invalid. Along a line which will be shown to overcome this difficulty, and which consistently enables the generalization of BG statistical mechanics, it was proposed in 1988 the entropy . In the context of cybernetics and information theory, this and similar forms have in fact been repeatedly introduced before 1988. The entropic form Sq is, for any q 1 , nonadditive. Indeed, for two probabilistically independent subsystems, it satisfies . This form will turn out to be extensive for an important class of nonlocal correlations, if q is set equal to a special value different from unity, noted qent (where ent stands for entropy . In other words, for such systems, we verify that , thus legitimating the use of the classical thermodynamical relations. Standard systems, for which SBG is extensive, obviously correspond to q ent = 1 . Quite complex systems exist in the sense that, for them, no value of q exists such that Sq is extensive. Such systems are out of the present scope: they might need forms of entropy different from Sq, or perhaps --more plainly-- they are just not susceptible at all for some sort of thermostatistical approach. Consistently with the results associated with Sq, the q -generalizations of the Central Limit Theorem and of its extended Lévy-Gnedenko form have been achieved. These recent theorems could of course be the cause of the ubiquity of q -exponentials, q -Gaussians and related mathematical forms in natural, artificial and social systems. All of the above, as well as presently available experimental, observational and computational confirmations --in high-energy physics and elsewhere-- are briefly reviewed. Finally, we address a confusion which is quite common in the literature, namely referring to distinct physical mechanisms versus distinct regimes of a single physical mechanism. This paper is part of the Topical Issue Statistical Power Law Tails in High-Energy Phenomena.  相似文献   

10.
We consider bilayer biomembranes or surfactants made of two chemically incompatible amphiphile molecules, which may laterally or transversely phase separate into macrodomains, upon variation of some suitable parameter (temperature, lateral pressure, etc.). The purpose is an extensive study of the dynamics of both lateral and transverse phase separations, when the bilayer is suddenly cooled down from a high initial temperature towards a final one very close to the spinodal point. The critical dynamics are investigated through the partial dynamic structure factors of different species. Using a two-order parameter field theory, where the two fields are the composition fluctuations of one component in the leaflets of the bilayer, combined with an extended van Hove approach that is based on two coupled Langevin equations (with noise), we exactly compute these dynamic structure factors. We first find that the dynamics is governed by two time scales. The longest one, , can be related to the thermal correlation length, | T - T c|-1/2 , by , with the dynamic critical exponent z = 4 , where is an atomic length scale, T the absolute temperature, and Tc its critical value. The characteristic time can be interpreted as the time required for the formation of the final macrophase domains. The second time scale is rather shorter, and can be viewed as the short time during which the unlike phospholipids execute local motion. Second, we demonstrate that the dynamic structure factors obey exact scaling laws, and depend on three lengths, namely the wavelength q-1 (q is the wave vector modulus), the correlation length , and a length scale R(t) t 1/z (z = 4representing the size of macrophase domains at time t . Of course, the two lengths and R(t) coincide at the final time at which the bilayer reaches its final equilibrium state. Finally, the present work must be considered as a natural extension of our previously published one dealing with the study of lateral and transverse phase separations from a static point of view.  相似文献   

11.
We discuss the algebras, representations, and thermodynamics of quantum group bosonic gas models with two different symmetries: GL p,q (2) and . We establish the nature of the basic numbers which follow from these GL p,q (2)- and -invariant bosonic algebras. The Fock space representations of both of these quantum group invariant bosonic oscillator algebras are analyzed. It is concisely shown that these two quantum group invariant bosonic particle gases have different algebraic and high-temperature thermo-statistical properties.  相似文献   

12.
A semi-phenomenological theory of variable-range hopping (VRH) is developed for two-dimensional (2D) quasi-one-dimensional (quasi-1D) systems such as arrays of quantum wires in the Wigner crystal regime. The theory follows the phenomenology of Efros, Mott and Shklovskii allied with microscopic arguments. We first derive the Coulomb gap in the single-particle density of states, g(ε), where ε is the energy of the charge excitation. We then derive the main exponential dependence of the electron conductivity in the linear (L), i.e. σ(T) ∼exp [-(TL/T)γL], and current in the non-linear (NL), i.e. , response regimes ( is the applied electric field). Due to the strong anisotropy of the system and its peculiar dielectric properties we show that unusual, with respect to known results, Coulomb gaps open followed by unusual VRH laws, i.e. with respect to the disorder-dependence of TL and and the values of γL and γNL.  相似文献   

13.
We present a model of bi-phasic vesicles in the limit of large surface tension. In this regime, the vesicle is completely stretched and well described by two spherical caps with a fold, which concentrates the membrane stress. The conservation laws and geometric constraints restrict the space of possible shapes to a pair of solutions labeled by a parameter given by line tension/pressure. For a given value of , the two solutions differ by the length of the interface between domains. For a critical value, , the two vesicle shapes become identical and no connected solution exists above this critical value. This model sheds new light on two proposed mechanisms (osmotic shocks and molecule absorption) to explain the budding and the fission in recent experiments.  相似文献   

14.
The single-pion production reactions pp d , pp np and pp pp were measured at a beam momentum of 0.95GeV/c ( T p 400 MeV) using the short version of the COSY-TOF spectrometer. The central calorimeter provided particle identification, energy determination and neutron detection in addition to time-of-flight and angle measurements from other detector parts. Thus all pion production channels were recorded with 1-4 overconstraints. The main emphasis is put on the presentation and discussion of the np channel, since the results on the other channels have already been published previously. The total and differential cross-sections obtained are compared to theoretical calculations. In contrast to the pp channel we observe in the np channel a strong influence of the excitation. In particular, the pion angular distribution exhibits a (3 cos2 + 1) -dependence, typical for a pure s -channel excitation and identical to that observed in the d channel. Since the latter is understood by a s -channel resonance in the 1 D 2 pn partial wave, we discuss an analogous scenario for the pn channel.  相似文献   

15.
We present a quantum mechanical framework for defining the statistics of measurements of , A(t) being a quantum mechanical variable. This is a generalization of the so-called full counting statistics proposed earlier for DC electric currents. We develop an influence functional formalism that allows us to study the quantum system along with the measuring device while fully accounting for the back action of the detector on the system to be measured. We define the full counting statistics of an arbitrary variable by means of an evolution operator that relates the initial and final density matrices of the measuring device. In this way we are able to resolve inconsistencies that occur in earlier definitions. We suggest two schemes to observe the so defined statistics experimentally.Received: 30 June 2003, Published online: 15 October 2003PACS: 73.50.Td Noise processes and phenomena - 73.23.-b Electronic transport in mesoscopic systems - 74.40.+k Fluctuations (noise, chaos, nonequilibrium superconductivity, localization, etc.)  相似文献   

16.
A formalism is developed for the partial-wave analysis of data on meson photoproduction off deuterons and applied to photoproduction of and mesons. Different interpretations of a dip-bump structure of the photoproduction cross-section in the 1670MeV region are presented and discussed. Helicity amplitudes for two low-mass S11 states are determined.  相似文献   

17.
The storage and transmission of information is well defined using the notions of entropy, mutual information and channel capacity as formalized by Shannon. These quantities are calculated for a quantum mesoscopic system in terms of scattering parameters. For a one-dimensional system, the mutual information is related to the thermal conductance. This relation allows to show that for an incident signal of power P, the channel capacity C has a universal upper bound given by C independent of quantum statistics. A general framework is proposed which makes use of a natural underlying symplectic structure, to relate the entropy of a quantum mesoscopic system to the scattering matrix.  相似文献   

18.
We examine the combinatorial or probabilistic definition (“Boltzmann’s principle”) of the entropy or cross-entropy function H ∝ or D ∝ - , where is the statistical weight and the probability of a given realization of a system. Extremisation of H or D, subject to any constraints, thus selects the “most probable” (MaxProb) realization. If the system is multinomial, D converges asymptotically (for number of entities N ↦∞) to the Kullback-Leibler cross-entropy DKL; for equiprobable categories in a system, H converges to the Shannon entropy HSh. However, in many cases or is not multinomial and/or does not satisfy an asymptotic limit. Such systems cannot meaningfully be analysed with DKL or HSh, but can be analysed directly by MaxProb. This study reviews several examples, including (a) non-asymptotic systems; (b) systems with indistinguishable entities (quantum statistics); (c) systems with indistinguishable categories; (d) systems represented by urn models, such as “neither independent nor identically distributed” (ninid) sampling; and (e) systems representable in graphical form, such as decision trees and networks. Boltzmann’s combinatorial definition of entropy is shown to be of greater importance for “probabilistic inference” than the axiomatic definition used in information theory.  相似文献   

19.
In this paper we implement the Schwinger–Keldysh closed-time path integral formalism in non-equilibrium QCD in accordance to the definition of the Collins–Soper fragmentation function. We consider a high-p T parton in QCD medium at initial time τ 0 with an arbitrary non-equilibrium (non-isotropic) distribution function fragmenting to a hadron. We formulate the parton-to-hadron fragmentation function in non-equilibrium QCD in the light-cone quantization formalism. It may be possible to include final-state interactions with the medium via a modification of the Wilson lines in this definition of the non-equilibrium fragmentation function. This may be relevant to the study of hadron production from a quark–gluon plasma at RHIC and LHC.  相似文献   

20.
The role of the band quantum number K in influencing the character of allowed transitions in heavy deformed nuclei is examined. The conditions for the occurrence of K -forbidden decays in this region are explored. Specific cases of “allowed” decays proceeding via K = 2 to K = 6 channels are presented to illustrate the phenomenon. The listed K = 2 transitions, which by themselves contribute over 10% of all the presently known allowed transitions for A 228 nuclei, are seen to have an average , which is clearly outside the normal range for allowed transitions. It is concluded that, wherever the -connected states can be confidently labelled using the quantum numbers, the K -forbiddenness is in general as significant as that involving the other two (spin and parity) quantum numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号