首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The threading of an alpha-cyclodextrin (alpha-CyD) by an unsymmetrical dumbbell generally results in two isomeric [2]rotaxanes differing in the orientation of the alpha-CyD. In this work, two methods have been developed for the unidirectionally threading an alpha-CyD to obtain isomer-free [2]rotaxanes. These methods use the Suzuki coupling of a boronic acid derivative and a halide in aqueous alkaline solution. The conformations of the two unidirectional [2]rotaxanes-R3 and R4 were determined by 2D 1H ROESY NMR spectra. The optical spectral studies revealed that each of the two [2]rotaxanes can proceed with E/Z photoisomerization and shuttling motions of the alpha-CyD ring on the thread under alternating irradiation at 330 and 275 nm, accompanied by fluorescence intensity changes at 530 nm. The induced circular dichroism (ICD) spectra of another two analogous [2]rotaxanes R1 and R2 were also studied. Distinctive ICD signal changes resulting from the photoisomerization with respect to the movements of alpha-CyD were detected. This demonstrates that, besides the fluorescence, ICD signal is another way to identify the shuttling motions of alpha-CyD in these [2]rotaxanes.  相似文献   

2.
Chiral 3,3'-bis(trisarylsilyl)-substituted binaphtholate rare earth metal complexes (R)-[Ln{Binol-SiAr3}(o-C6H4CH2NMe2)(Me2NCH2Ph)] (Ln = Sc, Lu, Y; Binol-SiAr3 = 3,3'-bis(trisarylsilyl)-2,2'-dihydroxy-1,1'-binaphthyl; Ar = Ph (2-Ln), 3,5-xylyl (3-Ln)) and (R)-[La{Binol-Si(3,5-xylyl)3}{E(SiMe3)2}(THF)2] (E = CH (4a), N (4b)) are accessible via facile arene, alkane, and amine elimination. They are efficient catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, giving TOF of up to 840 h(-1) at 25 degrees C for 2,2-diphenyl-pent-4-enylamine (5c) using (R)-2-Y. Enantioselectivities of up to 95% ee were achieved in the cyclization of 5c with (R)-2-Sc. The reactions show apparently zero-order rate dependence on substrate concentration and first-order rate dependence on catalyst concentration, but rates depend on total amine concentrations. Activation parameters for the cyclization of pent-4-enylamine using (R)-2-Y (deltaH(S)(double dagger) = 57.4(0.8) kJ mol(-1) and deltaS(S)(double dagger) = -102(3) J K(-1) mol(-1); deltaH(R)(double dagger) = 61.5(0.7) kJ mol(-1) and deltaS(R)(double dagger) = -103(3) J K(-1) mol(-1)) indicate a highly organized transition state. The binaphtholate catalysts were also applied to the kinetic resolution of chiral alpha-substituted aminoalkenes with resolution factors f of up to 19. The 2,5-disubstituted aminopentenes were formed in 7:1 to > or = 50:1 trans diastereoselectivity, depending on the size of the alpha-substituent of the aminoalkene. Rate studies with (S)-1-phenyl-pent-4-enylamine ((S)-15e) gave the activation parameters for the matching (deltaH(double dagger) = 52.2(2.8) kJ mol(-1), deltaS(double dagger) = -127(8) J K(-1) mol(-1) using (S)-2-Y) and mismatching (deltaH(double dagger) = 57.7(1.3) kJ mol(-1), deltaS(double dagger) = -126(4) J K(-1) mol(-1) using (R)-2-Y) substrate/catalyst combination. The absolute configuration of the Mosher amide of (2S)-2-methyl-4,4-diphenyl-pyrrolidine and (2R)-methyl-(5S)-phenyl-pyrrolidinium chloride, prepared from (S)-15e, were determined by crystallographic analysis. Catalyst (R)-4a showed activity in the anti-Markovnikov addition of n-propylamine to styrene.  相似文献   

3.
The haptotropic rearrangement of dinuclear metal carbonyl species on the conjugate pi-ligand of (micro2,eta3:eta5-4,6,8-trimethylazulene)M2(CO)5 [M = Fe (3) and Ru (4)] was investigated in detail both experimentally and theoretically. The complexes, 3 and 4, were synthesized and characterized by spectroscopy and crystallography. The spin saturation transfer technique of 1H NMR was used to measure the rate constant k of the haptotropic isomerization between the two enantiomers of 3 and 4, from which thermodynamic parameters were determined: (3; deltaS(double dagger) = -7 +/- 1 cal K(-1) mol(-1), deltaH(double dagger) = 22 +/- 1 cal mol(-1), deltaG(double dagger)373 = 25 +/- 1 cal mol(-1)), (4; deltaS(double dagger) = 7 +/- 1 cal K(-1) mol(-1), deltaH(double dagger) = 25 +/- 1 cal mol(-1), deltaG(double dagger)373 = 23 +/- 1 cal mol(-1)). DFT calculations (the B3LYP, B1B95 and PBE1PBE methods) were also carried out using the CEP-31G and cc-pVDZ as the basis set of the transition metal and other elements, respectively, by which both ground state and transition state structures were optimized for the haptotropic rearrangement of 3 and 4. The potential energy surface for these reactions suggests that the reaction involves the conversion of the coordination mode from micro2eta3,eta5- (ground state) to micro2,eta1,eta5- (transition state). Mechanistic consideration, in particular that of differences in transition states between the diiron and diruthenium complexes, is also described.  相似文献   

4.
Controlled-potential electrochemical oxidation of cis-[Ru(ROCS2)2(PPh3)2] (R = Et, iPr) yielded corresponding Ru(III) complexes, and the crystal structures of cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2](PF6) were determined. Both pairs of complexes exhibited almost identical coordination structures. The Ru-P distances in trans-[Ru(III)(ROCS2)2(PPh3)2](PF6) [2.436(3)-2.443(3) A] were significantly longer than those in cis-[Ru(II)(ROCS2)2(PPh3)2] [2.306(1)-2.315(2) A]: the smaller ionic radius of Ru(III) than that of Ru(II) stabilizes the trans conformation for the Ru(III) complex due to the steric requirement of bulky phosphine ligands while mutual trans influence by the phosphine ligands induces significant elongation of the Ru(III)-P bonds. Cyclic voltammograms of the cis-[Ru(ROCS2)2(PPh3)2] and trans-[Ru(ROCS2)2(PPh3)2]+ complexes in dichloromethane solution exhibited typical dual redox signals corresponding to the cis-[Ru(ROCS2)2(PPh3)2](+/0) (ca. +0.15 and +0.10 V vs ferrocenium/ferrocene couple for R = Et and iPr, respectively) and to trans-[Ru(ROCS2)2(PPh3)2](+/0) (-0.05 and -0.15 V vs ferrocenium/ferrocene for R = Et and iPr, respectively) couples. Analyses on the basis of the Nicholson and Shain's method revealed that the thermal disappearance rate of transient trans-[Ru(ROCS2)2(PPh3)2] was dependent on the concentration of PPh3 in the bulk: the rate constant for the intramolecular isomerization reaction of trans-[Ru(iPrOCS2)2(PPh3)2] was determined as 0.338 +/- 0.004 s(-1) at 298.3 K (deltaH* = 41.8 +/- 1.5 kJ mol(-1) and deltaS* = -114 +/- 7 J mol(-1) K(-1)), while the dissociation rate constant of coordinated PPh3 from the trans-[Ru(iPrOCS2)2(PPh3)2] species was estimated as 0.113 +/- 0.008 s(-1) at 298.3 K (deltaH* = 97.6 +/- 0.8 kJ mol(-1) and deltaS* = 64 +/- 3 J mol(-1) K(-1)), by monitoring the EC reaction (electrode reaction followed by chemical processes) at different concentrations of PPh3 in the bulk. It was found that the trans to cis isomerization reaction takes place via the partial dissociation of iPrOCS2(-) from Ru(II), contrary to the previous claim that it takes place by the twist mechanism.  相似文献   

5.
Several 5,6-disubstituted-7-oxabicyclo[2.2.1]hept-2-enes (1-4) were synthesized on > or = 0.1 mol scale. The heat-induced retro Diels-Alder (rDA) decomposition of these derivatives was studied by thermal analysis, and the kinetics of the rDA were measured for 4. First-order rate constants (k = 1.91-14.2 x 10(-5) s(-1)), measured at four temperatures between 124 and 150 degrees C, were used to calculate Arrhenius activation parameters Ea (34.5 +/- 0.5 kcal/mol) and ln A (1.77 +/- 0.03 x 10(4)). The observed activation energy was significantly larger (by 9.5 kcal/mol) than that previously measured for the maleic anhydride adduct 1, and this was attributed to the difference in LUMO energies for the two dienophiles. Modeling of the activation parameters found for 4 with density functional theory (DFT) calculations for similar compounds 5 and 6 gave close quantitative correlations for deltaH double dagger, deltaG double dagger, deltaS double dagger. The rDA reactions studied were found to be entropy-driven.  相似文献   

6.
The oxorhenium(V) dimer {MeReO(edt)}2 (1; where edt = 1,2-ethanedithiolate) catalyzes S atom transfer from thiiranes to triarylphosphines and triarylarsines. Despite the fact that phosphines are more nucleophilic than arsines, phosphines are less effective because they rapidly convert the dimer catalyst to the much less reactive catalyst [MeReO(edt)(PAr3)] (2). With AsAr3, which does not yield the monomer, the rate law is given by v = k[thiirane][1], independent of the arsine concentration. The values of k at 25.0 degrees C in CDCl3 are 5.58 +/- 0.08 L mol(-1) s(-1) for cyclohexene sulfide and ca. 2 L mol(-1) s(-1) for propylene sulfide. The activation parameters for cyclohexene sulfide are deltaH(double dagger) = 10.0 +/- 0.9 kcal mol(-1) and deltaS(double dagger) = -21 +/- 3 cal K(-1) mol(-1). Arsine enters the catalytic cycle after the rate-controlling release of alkene, undergoing a reaction with the Re(VII)(O)(S) intermediate that is so rapid in comparison that it cannot be studied directly. The use of a kinetic competition method provided relative rate constants and a Hammett reaction constant, rho = -1.0. Computations showed that there is little thermodynamic selectivity for arsine attack at O or S of the intermediate. There is, however, a large kinetic selectivity in favor of Ar3AsS formation: the calculated values of deltaH(double dagger) for attack of AsAr3 at Re=O vs Re=S in Re(VII)(O)(S) are 23.2 and 1.1 kcal mol(-1), respectively.  相似文献   

7.
Houston JR  Yu P  Casey WH 《Inorganic chemistry》2005,44(14):5176-5182
Water exchange from the oxo-centered rhodium(III) trimer, [Rh3(mu3-O)(mu-O2CCH3)6(OH2)3]+, was investigated using variable-temperature (272.8-281.6 K) and variable-pressure (0.1-200 MPa) 17O NMR spectroscopy. The exchange reaction was also monitored at three different acidities (pH = 1.8, 2.9, and 5.7) in which the molecule is in the fully protonated form (pKa = 8.3 (+/-0.2), I = 0.1 M, T = 298 K). The temperature dependence of the pseudo-first-order rate coefficient for water exchange yields the following kinetic parameters: k(ex)298 = 5 x 10(-3) s(-1), deltaH(double dagger) = 99 (+/-3) kJ mol(-1), and deltaS(double dagger) = 43 (+/-10) J K(-1) mol(-1). The enhanced reactivity of the terminal waters, some 6 orders of magnitude faster than water exchange from Rh(H2O)6(3+), is likely due to trans-labilization from the central oxide ion. Also, another contributing factor is the low average charge on the metal ions (+0.33/Rh). Variation of reaction rate with pressure results in a deltaV(double dagger) = +5.3 (+/-0.4) cm3 mol(-1), indicative of an interchange-dissociative (I(d)) pathway. These results are consistent with those published by Sasaki et al. who proposed that water substitution from rhodium(III) and ruthenium(III) oxo-centered trimers follows a dissociative mechanism based on highly positive activation parameters (Sasaki, Y.; Nagasawa, A.; Tokiwa-Yamanoto, A.; Ito, T. Inorg. Chim. Acta 1993, 212, 175-182).  相似文献   

8.
Rotaxane-based nanoscale architectures have a huge potential to be processed into widely applied devices. In this work, light-driven rotaxanes with fluorescent chromophores based on alpha-cyclodextrin (alpha-CyD) have been doped into amphoteric thermoreversible hydrosol-gels to form a new type of disperse system with reversible optical signals. The photoisomerizations with alpha-CyD shuttling have been studied by induced circular dichroism (ICD). Compared with their corresponding solutions, the rotaxane-doped hydrosol-gel systems produce much more obvious fluorescent binary signals.  相似文献   

9.
We have measured 13C NMR spectra of uranyl(V) carbonate complex in D2O solution containing 1.003 M Na2(13)CO3 at various temperatures. Two singlet signals corresponding to free and coordinated CO3(2-) were observed at 169.13 and 106.70 ppm, respectively. From the peak area ratio, the structure of the uranyl(V) carbonate complex was determined as [U(V)O2(CO3)3]5-. Furthermore, kinetic analyses of the exchange reaction of free and coordinated CO3(2-) in [U(V)O2(CO3)3]5- were carried out using 13C NMR line-broadening. As a result, the first-order rate constant at 298 K and the activation parameters for CO3(2-) exchange reaction in [U(V)O2(CO3)3]5- were evaluated as 1.13 x 10(3) s(-1) and deltaH(double dagger) = 62.0 +/- 0.7 kJ x mol(-1), deltaS(double dagger) = 22 +/- 3 J x mol(-1) x K(-1), respectively. We suggest that the exchange follows a dissociative mechanism as in the corresponding [U(VI)O2(CO3)3]4- complex.  相似文献   

10.
Although various reactions involved in photoexcited states of polypyridyl ruthenium(II) complexes have been extensively studied, photoisomerization of the complexes is very rare. We report the first illustration of stoichiometric photoisomerization of trans-[Ru(tpy)(pynp)OH(2)](2+) (1a) [tpy = 2,2':6',2'-terpyridine; pynp = 2-(2-pyridyl)-1,8-naphthyridine] to cis-[Ru(tpy)(pynp)OH(2)](2+) (1a') and the isolation of 1a and 1a' for X-ray crystallographic analysis. Polypyridyl ruthenium(II) aquo complexes are attracting much attention related to proton-coupled electron transfer and water oxidation catalysis. We demonstrate that the photoisomerization significantly controls the redox reactions and water oxidation catalyses involving the ruthenium(II) aquo complexes 1a and 1a'.  相似文献   

11.
Abstract Although broadband UV-B irradiation has been shown to induce selective immunosuppression in a variety of experimental systems, the wavelength dependence of the immunomodulation and the initial events in the skin remain unclear. In the present study three UV lamps were used at suberythermal doses on C3H mice: a conventional broadband UV-B source (270–350 nm), a narrowband UV-B source (311–312 nm) and a UV-A source (320400 nm). Their effects on the photoisomerization of the naturally occumng trans- isomer of urocanic acid (UCA) to cis- UCA, on the density of Langerhans cells and on the ability of epidermal cells to stimulate allogeneic lymphocytes in the mixed skin lymphocyte reaction (MSLR) were ascertained. Broadband UV-B irradiation was more efficient than narrowband UV-B at reducing the density and function of Langerhans cells, while UV-A irradiation was least effective. These changes were most pronounced immediately following irradiation, were dose dependent and were only detected in UV-exposed areas of skin. There was a close correlation between the UV-induced reduction in Langerhans cell density and the formation of cis -UCA in the epidermis. This correlation was not detected between the reduction in the MSLR response following UV irradiation in vivo and cis-UCA formation.  相似文献   

12.
The kinetics of the oxidative addition of PhSeSePh and PhTeTePh to the stable 17-electron complex *Cr(CO)3C5Me5 have been studied utilizing stopped-flow techniques. The rates of reaction are first-order in each reactant, and the enthalpy of activation decreases in going from Se (deltaH(double dagger) = 7.0 +/- 0.5 kcal/mol, deltaS(double dagger) = -22 +/- 3 eu) to Te (deltaH(double dagger) = 4.0 +/- 0.5 kcal/mol, deltaS(double dagger) = -26 +/- 3 eu). The kinetics of the oxidative addition of PhSeH and *Cr(CO)3C5Me5 show a change in mechanism in going from low (overall third-order) to high (overall second-order) temperatures. The enthalpies of the oxidative addition of PhE-EPh to *Cr(CO)3C5Me5 in toluene solution have been measured and found to be -29.6, -30.8, and -28.9 kcal/mol for S, Se, and Te, respectively. These data are combined with enthalpies of activation from kinetic studies to yield estimates for the solution-phase PhE-EPh bond strengths of 46, 41, and 33 kcal/mol for E = S, Se, and Te, respectively. The corresponding Cr-EPh bond strengths are 38, 36, and 31 kcal/mol. Two methods have been used to determine the enthalpy of hydrogenation of PhSeSePh in toluene on the basis of reactions of HSPh and HSePh with either *Cr(CO)3C5Me5 or 2-pyridine thione. These data lead to a thermochemical estimate of 72 kcal/mol for the PhSe-H bond strength in toluene solution, which is in good agreement with kinetic studies of H atom transfer from HSePh at higher temperatures. The reaction of H-Cr(CO)3C5Me5 with PhSe-SePh is accelerated by the addition of a Cr radical and occurs via a rapid radical chain reaction. In contrast, the reaction of PhTe-TePh and H-Cr(CO)3C5Me5 does not occur at any appreciable rate at room temperature, even in the presence of added Cr radicals. This is in keeping with a low PhTe-H bond strength blocking the chain and implies that H-TePh < or = 63 kcal/mol. Structural data are reported for PhSe-Cr(CO)3C5Me5 and PhS-Cr(CO)3C5Me5. The two isostructural complexes do not show signs of an increase in steric strain in terms of metal-ligand bonds or angles as the Cr-EPh bond is shortened in going from Se to S. Bond strength estimates of the PhE-H and PhE-EPh derived from density functional theory calculations are in reasonable agreement with experimental data for E = Se but not for E = Te. The nature of the singly occupied molecular orbital of the *EPh radicals is calculated to show increasing localization on the chalcogenide atom in going from S to Se to Te.  相似文献   

13.
A competitive photoresponsive supramolecular system is formed in a dilute aqueous solution of three components: vesicles of amphiphilic α-cyclodextrin host 1a, divalent p-methylphenyl guest 2 or divalent p-methylbenzamide guest 3, and photoresponsive azobenzene monovalent guest 5. Guests 2 and 3 form weak inclusion complexes with 1a (K(a)≈10(2) M(-1)), whereas azobenzene guest 5 forms a strong inclusion complex (K(a)≈10(4) M(-1)), provided it is in the trans state. The aggregation and adhesion of vesicles of host 1a is mediated by guest 2 (or 3) due to the formation of multiple intervesicular noncovalent links, as confirmed by using isothermal titration calorimetry (ITC), optical density measurements at 600 nm (OD600), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM). The addition of excess monovalent guest trans-5 to vesicles of 1a aggregated by divalent guest 2 (or 3) causes the dispersion of vesicles of 1a because trans-5 displaces 2 (as well as 3) from the vesicle surface. Upon UV irradiation of a dilute ternary mixture of vesicles of 1a, guest 2 (or 3), and competitor trans-5, compound trans-5 isomerizes to cis-5, and renewed aggregation of vesicles of 1a by guest 2 (or 3) occurs because 2 (as well as 3) displaces cis-5 from the vesicle surface. Subsequent visible irradiation causes the redispersion of vesicles of 1a because cis-5 reisomerizes into trans-5, which again displaces guest 2 (or 3) from the vesicle surface. In this way, the competitive photoresponsive aggregation and dispersion of vesicles can be repeated for several cycles.  相似文献   

14.
Novel photoswitchable chiral hosts having an axis chiral 2,2'-dihydroxy-1,1'-binaphthyl (BINOL)-appended stiff-stilbene, trans-(R,R)- and -(S,S)-1, were synthesized by palladium-catalyzed Suzuki-Miyaura coupling and low-valence titanium-catalyzed McMurry coupling as key steps, and they were fully characterized by various NMR spectral techniques. The enantiomers of trans-1 showed almost complete mirror images in the CD spectra, where two split Cotton effects (exciton coupling) were observed in the beta-transitions of the naphthyl chromophore at 222 and 235 nm, but no Cotton effect was observed in the stiff-stilbene chromophore at 365 nm. The structures of (R)-10 and trans-(R,R)-1 were confirmed by X-ray structural analysis. The optimized structure of cis-1 by MO calculations has a wide chiral cavity of 7-8 A in diameter, whereas trans-1 cannot form an intramolecular cavity based on the X-ray data. Irradiation of (R,R)-trans-1 with black light (lambda = 365 nm) in CH3CN or benzene at 23 degrees C led to the conversion to the corresponding cis-isomer, as was monitored by 1H NMR, UV-vis, and CD spectra. At the photostationary state, the cis-1/trans-1 ratio was 86/14 in benzene or 75/25 in CH3CN. On the other hand, irradiation of the cis-1/trans-1 (75/25) mixture in CH3CN with an ultra-high-pressure Hg lamp at 23 degrees C (lambda = 410 nm) led to the photostationary state, where the cis-1/trans-1 ratio was estimated to be 9/91 on the basis of the 1H NMR spectra. The cis-trans and trans-cis interconversions could be repeated 10 times without decomposition of the C=C double bond. Thus, a new type of photoswitchable molecule has been developed, and trans-1 and cis-1 were quite durable under irradiation conditions. The guest binding properties of the BINOL moieties of trans- and cis-(R,R)-1 with F-, Cl-, and H2PO4- were examined by 1H NMR titration in CDCl3. Similar interaction with F- and Cl- was observed in trans-1 (host/guest = 1/1, Kassoc = (1.0 +/- 0.13) x 103 for F- and (4.6 +/- 0.72) x 102 M-1 for Cl-) and cis-1 (host/guest = 1/1, Kassoc = (1.0 +/- 0.13) x 103 for F- and (5.9 +/- 0.69) x 10 M-1 for Cl-), but H2PO4- interacted differently: the cis-isomer formed the 1/1 complex (Kassoc = (9.38 +/- 2.67) x 10 M-1), whereas multistep equilibrium was expected for the trans-isomer.  相似文献   

15.
The activity of mushroom tyrosinase towards a representative series of phenolic and diphenolic substrates structurally related to tyrosine has been investigated in a mixed solvent of 34.4% methanol-glycerol (7:1, v/v) and 65.6% (v/v) aqueous 50 mM Hepes buffer at pH 6.8 at various temperatures. The kinetic activation parameters controlling the enzymatic reactions and the thermodynamic parameters associated with the process of substrate binding to the enzyme active species have been deduced from the temperature variation of the kcat and KM parameters. The activation free energy is dominated by the enthalpic term, the value of which lies in the relatively narrow range of 61+/-9 kJ mol(-1) irrespective of substrate or reaction type (monophenolase or diphenolase). The activation entropies are small and generally negative and contribute no more than 10% to the activation free energy. The substrate binding parameters are characterized by large and negative enthalpy and entropy contributions, which are typically dictated by polar protein-substrate interactions. The substrate 4-hydroxyphenylpropionic acid exhibits a strikingly anomalous temperature dependence of the enzymatic oxidation rate, with deltaH(double dagger) approximately = 150 kJ mol(-1) and deltaS(double dagger) approximately = 280 J K(-1) mol(-1), due to the fact that it can competitively bind to the enzyme through the phenol group, like the other substrates, or the carboxylate group, like carboxylic acid inhibitors. A kinetic model that takes into account the dual substrate/inhibitor nature of this compound enables rationalization of this anomalous behavior.  相似文献   

16.
用中压汞灯(λ > 300 nm)照射4-苯乙烯基吡啶、2-苯乙烯基苯并噁唑和5-苯基-2-苯乙烯基噁唑三种杂芳基乙烯单体中任意两种的硫酸水溶液,得到三种交叉二聚体.用高效液相色谱跟踪研究了交叉光二聚反应,发现每组反应生成三种光二聚体,其中二种为单体自身的光二聚体,而另外一种是两种不同单体的交叉光二聚体.交叉二聚体通过柱色谱分离得到,其顺式头对尾结构经紫外、红外、氢谱、碳谱和元素分析确定.用紫外光谱和高效液相色谱跟踪研究了交叉光二聚体的稀溶液在低压汞灯(λmax=254 nm)照射下的光解反应.研究发现交叉二聚体能够彻底发生光解,首先生成原来的反式单体,所生成的反式单体容易发生异构化而生成顺式单体,最终建立起反顺异构化平衡.  相似文献   

17.
Several subphthalocyanine derivatives that contain an alkoxo substituent as an axial ligand (RO-Subpc, R = 9-anthracenemethyl, benzyl, phenyl, 3,5-dimethylbenzyl, 3,5-dimethylphenyl, 4-methylbenzyl, and 4-methylphenyl) were synthesized. The formation of inclusion complexes of RO-Subpc with beta-CD in DMSO and at the toluene/water interface was investigated by UV/Vis absorption spectroscopy, induced circular dichroism (ICD), and nuclear magnetic resonance (NMR) measurements. Interfacial tension measurements suggested that beta-CD adsorbed as a monolayer at the toluene/water interface and probably orientated towards the toluene phase with its primary face. The 1:1 composition of beta-CD.RO-Subpc inclusion complexes was confirmed in DMSO and at the toluene/water interface for BzO-Subpc, PhO-Subpc, MeBzO-Subpc, and MePhO-Subpc. A 2:1 inclusion complex of AnO-Subpc formed in DMSO. The observed ICD spectra of beta-CDRO-Subpc inclusion complexes are discussed with respect to molecular modeling and the simulation based on Tinoco-Kirkwood theory. Interestingly, the ICD spectra of beta-CD.BzO-Subpc and beta-CD.MeBzO-Subpc inclusion complexes exhibited a negative sign in DMSO and a positive sign at the toluene/water interface. This reversal of the ICD sign strongly suggests a difference in the structure of the inclusion complexes: beta-CD at the interface formed the inclusion complex with its primary face, whereas the secondary face of beta-CD bound favorably to RO-Subpc in DMSO.  相似文献   

18.
Infrared photoisomerization of both trans- and cis-1,2-dichloroethylene molecules sensitized by SF6 has been observed by using a CO2 laser. The direct infrared photoisomerization has also been observed for the trans molecule. The reaction rate of the sensitized photoisomerization increases by 6 times as compared with the direct process. The dielectric breakdown induced by an intense laser pulse enhances a dissociative reaction.  相似文献   

19.
Two new cytotoxic fluorescent platinum(II) compounds, cis-[Pt(A9opy)Cl2] (1) and cis-[Pt(A9pyp)(DMSO)Cl2] (2),have been designed, synthesized, and characterized by IR, 1H NMR, and 195Pt NMR spectroscopy; electrospray ionization mass spectrometry (ESI-MS); and single-crystal X-ray diffraction. The carrier ligands selected for thesynthesis of these fluorescent platinum(II) compounds are E-2-[1-(9-anthryl)-3-oxo-3-prop-2-enylpyridine] (abbreviatedas A9opy) and E-1-(9-anthryl)-3-(2-pyridyl)-2-propenone (abbreviated as A9pyp). The compound cis-[Pt(A9opy)Cl2](1) comprises a peculiar cis-platinum(II) organometallic compound, in which the platinum(II) ion is bound to the photoisomerizable carbon-carbon double bond of the carrier ligand. The effects of the metal-ion coordination on the photoisomerization of the carbon-carbon double bond of the ligand have been studied. In contrast, the carrier ligand A9pyp used for the synthesis of the cis-[Pt(A9pyp)(DMSO)Cl2] compound (2) does not undergo such anisomerization process and remains in the E conformation, while coordinated to the platinum(II) ion through the nitrogen of the pyridine ring. In addition to the synthesis and characterization, solution studies of both compounds have also been performed in detail, including NMR and ESI-MS spectroscopy. Moreover, a high degree of cytotoxicactivity of compound 1 was found, as compared to cisplatin and its corresponding platinum-free molecule, in a series of human tumor cell lines. Compound 2 was also found to be highly active against these cell lines but appeared less active compared to the platinum-free molecule.  相似文献   

20.
The four stereoisomers of chalcogran 1 ((2RS,SRS)-2-ethyl-1,6-di-oxaspiro[4.4]nonane), the principal component of the aggregation pheromone of the bark beetle pityogenes chalcographus, are prone to interconversion at the spiro center (C5). During diastereo- and enantioselective dynamic gas chromatography (DGC), epimerization of 1 gives rise to two independent interconversion peak profiles, each featuring a plateau between the peaks of the interconverting epimers. To determine the rate constants of epimerization by dynamic gas chromatography (DGC), equations to simulate the complex elution profiles were derived, using the theoretical plate model and the stochastic model of the chromatographic process. The Eyring activation parameters of the experimental interconversion profiles, between 70 and 120 C in the presence of the chiral stationary phase (CSP) Chirasil-beta-Dex, were then determined by computer-aided simulation with the aid of the new program Chrom-Win: (2R,5R)-1: deltaG(++) (298.15 K) = 108.0 +/-0.5 kJ mol(-1), deltaH(++) = 47.1+/-0.2 kJ mol(-1), deltaS(++) = -204+/-6 JK(-1) mol(-1): (2R,5S)-1: deltaG(++) (298.15 K) = 108.5+/-0.5 kJ mol(-1), deltaH(++) = 45.8+/-0.2 kJ mol(-1), deltaS(++) = -210 +/-6 J K mol(-1); (2S,5S)-1: deltaG(++) (298.15 K)= 108.1+/-0.5 kJ mol(-1), deltaH(++) = 49.3+/-0.3 kJ mol(-1), deltaS(++) = -197+/-8 J K(-1) mol(-1); (2S,5R)-1: deltaG(++) (298.15 K)=108.6+/-0.5 kJ mol(-1), deltaH(++) = 48.0+/-0.3 kJ mol(-1), deltaS(++) = -203+/-8 J K(-1) mol(-1). The thermodynamic Gibbs free energy of the E/Z equilibrium of the epimers was determined by the stopped-flow multidimensional gas chromatographic technique: deltaG(E/Z) (298.15 K)= -0.5 kJ mol(-1), deltaH(E/Z) = 1.4 kJ mol(-1) and deltaS(E/Z) = 6.3 J K(-1) mol(-1). An interconversion pathway proceeding through ring-opening and formation of a zwitterion and an enol ether/alcohol intermediate of 1 is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号