首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This study presents a novel time series analysis methodology to detect, locate, and estimate the extent of the structural changes (e.g. damage). In this methodology, ARX models (Auto-Regressive models with eXogenous input) are created for different sensor clusters by using the free response of the structure. The output of each sensor in a cluster is used as an input to the ARX model to predict the output of the reference channel of that sensor cluster. Two different approaches are used for extracting Damage Features (DFs) from these ARX models. For the first approach, the coefficients of the ARX models are directly used as the DFs. It is shown with a 4 dof numerical model that damage can be identified, located and quantified for simple models and noise free data. To consider the effects of the noise and model complexity, a second approach is presented based on using the ARX model fit ratios as the DFs. The second approach is first applied to the same 4 DOF numerical model and to the numerical data coming from an international benchmark study for noisy conditions. Then, the methodology is applied to the experimental data from a large scale laboratory model. It is shown that the second approach performs successfully for different damage cases to identify and locate the damage using numerical and experimental data. Furthermore, it is observed that the DF level is a good indicator for estimating the extent of the damage for these cases. The potential and advantages of the methodology are discussed along with the analysis results. The limitations of the methodology, recommendations, and future work are also addressed.  相似文献   

2.
In this paper, an experimental and numerical investigation of premixed methane/air flame dynamics in a closed combustion vessel with a thin obstacle is described. In the experiment, high-speed video photography and a pressure transducer are used to study the flame shape changes and pressure dynamics. In the numerical simulation, four sub-grid scale viscosity models and three sub-grid scale combustion models are evaluated for their individual prediction compared with the experimental data. High-speed photographs show that the flame propagation process can be divided into five stages: spherical flame, finger-shaped flame, jet flame, mushroom-shaped flame and bidirectional propagation flame. Compared with the other sub-grid scale viscosity models and sub-grid scale combustion models, the dynamic Smagorinsky–Lilly model and the power-law flame wrinkling model are better able to predict the flame behaviour, respectively. Thus, coupling the dynamic Smagorinsky–Lilly model and the power-law flame wrinkling model, the numerical results demonstrate that flame shape change is a purely hydrodynamic phenomenon, and the mushroom-shaped flame and bidirectional propagation flame are the result of flame–vortex interaction. In addition, the transition from “corrugated flamelets” to “thin reaction zones” is observed in the simulation.  相似文献   

3.
Continuum fluid models of weakly ionized plasmas are useful in the design and control of plasma-assisted deposition and etching processes. The equations in these models are numerically stiff. Their stiffness is affected by the imposed boundary conditions. In this work, a DC discharge model is studied and the effect of the boundary conditions on the model solution is investigated. It is established, both analytically and numerically, that depending on the choice of boundary conditions the model may range from being ill-posed to being solvable with standard software. It is also established that excessive truncation error maybe present in numerical simulations which appear to qualitatively capture plasma structure. Accurate numerical simulations of the considered model, with alternate boundary conditions, are shown to capture many characteristics of a DC discharge, albeit at lower values of applied voltage than those reported in the literature. Finally, model shortcomings are discussed  相似文献   

4.
Exposure estimates inside space vehicles, surface habitats, and high altitude aircrafts exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward–backward (FB) and directionally coupled forward–backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETC-HEDS, FLUKA, and MCNPX, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.  相似文献   

5.
提出了一种选取射频功率放大器的最优行为模型并获取指纹特征的方法。针对Wiener模型和Hammerstein模型,提出了一种基于加权最小二乘法的最优行为模型选取方法,并给出了具体的数学分析。并对实际系统的功率放大器进行数值仿真,验证了算法的可行性及有效性,即首先根据训练集得到放大器的行为模型系数,再采用多种评判标准,通过分析测试集、训练集的误差得到最优行为模型。数值仿真结果表明:本文提出的方法能够有效地选取射频功率放大器的最优行为模型,且拟合误差较小。  相似文献   

6.
场线耦合问题是电磁兼容分析与电磁效应评估中的重要课题。经典场线耦合模型受限于准TEM波近似,在较高频率时将导致不可接受的模型误差。传输线超理论(TLST)建立了高频场线耦合模型,解决了经典场线耦合模型的困难。基于TLST介绍了非均匀多导体传输线的高频场线耦合模型,提出了三种不同终端负载情况下对应边界条件的设置方法。最后通过具体算例对比了高频模型和经典模型以及全波分析计算结果,证实了高频场线耦合模型的普遍适用性、边界条件设置的有效性和数值实现过程的准确性。  相似文献   

7.
Two related numerical models that calculate the time-dependent pressure field radiated by an arbitrary photoacoustic source in a fluid, such as that generated by the absorption of a short laser pulse, are presented. Frequency-wavenumber (k-space) implementations have been used to produce fast and accurate predictions. Model I calculates the field everywhere at any instant of time, and is useful for visualizing the three-dimensional evolution of the wave field. Model II calculates pressure time series for points on a straight line or plane and is therefore useful for simulating array measurements. By mapping the vertical wavenumber spectrum directly to frequency, this model can calculate time series up to 50 times faster than current numerical models of photoacoustic propagation. As the propagating and evanescent parts of the field are calculated separately, model II can be used to calculate far- and near-field radiation patterns. Also, it can readily be adapted to calculate the velocity potential and thus particle velocity and acoustic intensity vectors. Both models exploit the efficiency of the fast Fourier transform, and can include the frequency-dependent directional response of an acoustic detector straightforwardly. The models were verified by comparison with a known analytic solution and a slower, but well-understood, numerical model.  相似文献   

8.
A lattice Boltzmann equation (LBE) for axisymmetric thermal flows is proposed. The model is derived from the kinetic theory which exhibits several features that distinguish it from other previous LBE models. First, the present thermal LBE model is derived from the continuous Boltzmann equation, which has a solid foundation and clear physical significance; Second, the model can recover the energy equation with the viscous dissipation term and work of pressure which are usually ignored by traditional methods and the existing thermal LBE models; Finally, unlike the existing thermal LBE models, no velocity and temperature gradients appear in the force terms which are easy to realize in the present model. The model is validated by thermal flow in a pipe, thermal buoyancy-driven flow, and swirling flow in vertical cylinder by rotating the top and bottom walls. It is found that the numerical results agreed excellently with analytical solution or other numerical results.  相似文献   

9.
This paper presents comparison of two numerical models of the momentumless turbulent wake dynamics behind a body of revolution in a linearly stratified medium, namely, the model based on direct (DNS) numerical integration of Navier–Stokes equations in the Oberbeck–Boussinesq approximation and the mathematical model with application of a semi-empirical turbulence model of the third order. The results of calculations by these two models agree with the known experimental data.  相似文献   

10.
A model updating methodology is proposed for calibration of nonlinear finite element (FE) models simulating the behavior of real-world complex civil structures subjected to seismic excitations. In the proposed methodology, parameters of hysteretic material models assigned to elements (or substructures) of a nonlinear FE model are updated by minimizing an objective function. The objective function used in this study is the misfit between the experimentally identified time-varying modal parameters of the structure and those of the FE model at selected time instances along the response time history. The time-varying modal parameters are estimated using the deterministic–stochastic subspace identification method which is an input–output system identification approach. The performance of the proposed updating method is evaluated through numerical and experimental applications on a large-scale three-story reinforced concrete frame with masonry infills. The test structure was subjected to seismic base excitations of increasing amplitude at a large outdoor shake-table. A nonlinear FE model of the test structure has been calibrated to match the time-varying modal parameters of the test structure identified from measured data during a seismic base excitation. The accuracy of the proposed nonlinear FE model updating procedure is quantified in numerical and experimental applications using different error metrics. The calibrated models predict the exact simulated response very accurately in the numerical application, while the updated models match the measured response reasonably well in the experimental application.  相似文献   

11.
对真空环境下带状电缆模型直流X射线辐照响应进行了实验和数值模拟研究;研制了电缆直流X射线辐照实验系统;使用蒙特卡罗模拟软件计算了直流X光机产生的X射线能谱、通量等参数;建立了带状电缆X射线辐照响应一维计算模型,该计算模型包括电缆导体与介质层间隙和介质层电导率模型。实验测量了两个带状电缆模型的直流X射线辐照响应电流波形,并对其进行了数值模拟。结果显示,在一定的电缆导体与介质层间隙大小假设条件下,采用带状电缆X射线辐照响应计算模型计算的结果与实验测量结果在波形特征和绝对幅度方面比较接近,说明了利用该模型描述电缆直流X射线辐照响应具有其合理性。  相似文献   

12.
In this paper,we present a Cole-Hopf transformation based lattice Boltzmann(LB) model for solving one-dimensional Burgers' equation,and compared to available LB models,the effect of nonlinear convection term can be eliminated.Through Chapman-Enskog analysis,it can be found that the converted diffusion equation based on the Cole-Hopf transformation can be recovered correctly from present LB model.Some numerical tests are also performed to validate the present LB model,and the numerical results show that,similar to previous LB models,the present model also has a second-order convergence rate in space,but it is more accurate than the previous ones.  相似文献   

13.
最优速度模型与元胞自动机模型的比较研究   总被引:1,自引:0,他引:1       下载免费PDF全文
贾宁  马寿峰 《物理学报》2010,59(2):832-841
用解析分析与数值仿真的手段研究了一种典型的车辆跟驰模型(OV模型)与元胞自动机模型(NS模型)之间的区别与联系.首先通过对模型规则的分析,证明了确定NS模型是OV模型的一种离散形式.随后针对两模型更复杂的具体形式,通过数值仿真的手段进行了模型的密度-流量关系与模型在开放边界下的动态特性的研究.实验结果表明,从现象来看,OV模型与NS模型具有非常近似的性质,但两种模型的机制不相同,并且各自具有不能相互替代的优势.为交通流模型的使用和改进提供了参考.  相似文献   

14.
Minoru Watari 《Physica A》2007,382(2):502-522
The current finite difference lattice Boltzmann method (FDLBM) gives a fixed specific heat ratio because internal energy is limited to the translational freedom of the space. Yan et al. and Kataoka et al. clarified the conditions for deriving models with arbitrary specific heat ratio and proposed Euler models. However, these model applications to numerical simulations showed the weakness in the numerical stability. In this paper, a two-dimensional FDLBM Navier Stokes model and a three-dimensional FDLBM Euler model, which allow arbitrary values to be set for the specific heat ratio, were proposed. These models stably performed numerical simulations from subsonic to supersonic ranges.  相似文献   

15.
The coupling of the upper and lower atmosphere and the problem of developing a unified numerical model of the Earth’s gaseous envelope is considered. The existing models of the upper and lower atmosphere are analyzed and specific models for use as parts of a future metamodels of Earth’s atmosphere are selected. A general algorithm for combining these models is proposed.  相似文献   

16.
半解析求解平均原子模型方法充分利用了已知精确波函数的解析性质,通过对平均原子模型中势函数的数值拟合,就得到仅含一个数值因子的半解析波函数以及相应的能量本征值.本文列出了等离子体中相对论性平均原子模型的诸方程,特别注意方程求解技术和程序设计中的一些细节.与完全数值解以及其他类似模型得到的数值解进行的比较表明,在较高温度条件下半解析结果的精度是相当高的,求解的效率也很高.此外还对物理模型中某些缺陷进行了分析.  相似文献   

17.
The paper investigates and compares a range of different models currently used for modelling nonlinear optical phenomena. The models are implemented in the numerical time domain Transmission Line Modelling (TLM) method and include a Kerr model and different formulations of the Duffing model. The models are used to simulate an all-optical limiter for a CW input and results compared with ones available in the literature. This enables a comparison to be made between the different models, from which it is concluded that the Duffing model has some advantages, when modelling materials and phenomena involving more than one frequency, arising from its ability to describe dispersive effects. These conclusions are further supported by the simulation results obtained for a pulse input.  相似文献   

18.
Two three-dimensional (3D) lattice Boltzmann models in the framework of coupled double-distribution-function approach for compressible flows, in which specific-heat ratio and Prandtl number can be adjustable, are developed in this paper. The main differences between the two models are discrete equilibrium density and total energy distribution function. One is the D3Q25 model obtained from spherical function, and the other is the D3Q27 standard lattice model obtained from Hermite expansions of the corresponding continuous equilibrium distribution functions. The two models are tested by numerical simulations of some typical compressible flows, and their numerical stability and precision are also analysed. The results indicate that the two models are capable for supersonic flows, while the one from Hermite expansions is not suitable for compressible flows with shock waves.  相似文献   

19.
The work presents a comparison of numerical models of a far turbulent wake of a towed elongated body of revolution in a homogeneous fluid: model based on the direct numerical simulation, and two semi-empirical models involving the equation of the turbulence energy balance. Computational results demonstrate the self-similarity of the decay and agree with known experimental data.  相似文献   

20.
Two numerical models are presented for the prediction of sound leakage through openings in thin hard barriers. The first numerical method is based on a simple procedure of numerical integration that can be implemented straightforwardly. This model is a more general approach, suitable for barriers with arbitrary gaps. The second model is a new method that permits prediction of sound leakage due to the presence of horizontal gaps in a long barrier. In the new method, effective barriers of appropriate heights represent the edges of the horizontal gaps. The sound diffracted by each effective barrier is calculated by a closed-form analytic expression. The total sound-pressure level is determined from a sum of these diffracted fields. Hence, the new method is fast, simple, and intuitive, allowing the leakage to be assessed accurately. The validity of these two numerical models is confirmed by precise experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号