首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A well‐known formula of Tutte and Berge expresses the size of a maximum matching in a graph G in terms of what is usually called the deficiency of G. A subset X of V(G) for which this deficiency is attained is called a Tutte set of G. While much is known about maximum matchings, less is known about the structure of Tutte sets. In this article, we study the structural aspects of maximal Tutte sets in a graph G. Towards this end, we introduce a related graph D(G). We first show that the maximal Tutte sets in G are precisely the maximal independent sets in its D‐graph D(G), and then continue with the study of D‐graphs in their own right, and of iterated D‐graphs. We show that G is isomorphic to a spanning subgraph of D(G), and characterize the graphs for which G?D(G) and for which D(G)?D2(G). Surprisingly, it turns out that for every graph G with a perfect matching, D3(G)?D2(G). Finally, we characterize bipartite D‐graphs and comment on the problem of characterizing D‐graphs in general. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 343–358, 2007  相似文献   

2.
We show that the number of chains of given length in a graph G can be easily found from the Tutte polynomial of G. Hence two Tutte-equivalent graphs will have the same distribution of chain lengths. We give two applications of this latter statement.We also give the dual results for the numbers of multiple edges with given muliplicities.  相似文献   

3.
A graph G is called T-unique if any other graph having the same Tutte polynomial as G is isomorphic to G. Recently, there has been much interest in determining T-unique graphs and matroids. For example, de Mier and Noy [A. de Mier, M. Noy, On graphs determined by their Tutte polynomials, Graphs Combin. 20 (2004) 105-119; A. de Mier, M. Noy, Tutte uniqueness of line graphs, Discrete Math. 301 (2005) 57-65] showed that wheels, ladders, Möbius ladders, square of cycles, hypercubes, and certain class of line graphs are all T-unique. In this paper, we prove that the twisted wheels are also T-unique.  相似文献   

4.
《Quaestiones Mathematicae》2013,36(5):709-724
Abstract

Using two related parameters, ζ and γ, we extend the recursion for com- puting the Tutte polynomial of any graph to the computation of the Tutte polynomial of any multigraph. With this recursion, we found explicit formulae for several fami- lies of multigraphs. In particular, the Tutte polynomials of some cyclic multigraphs, 2?tree multigraphs, and any l?bridge multigraph.  相似文献   

5.
We say that a graph G is T-unique if any other graph having the same Tutte polynomial as G is necessarily isomorphic to G. In this paper we show that several well-known families of graphs are T-unique: wheels, squares of cycles, complete multipartite graphs, ladders, Möbius ladders, and hypercubes. In order to prove these results, we show that several parameters of a graph, like the number of cycles of length 3, 4 and 5, and the edge-connectivity are determined by its Tutte polynomial.Research partially supported by projects BFM2001-2340 and by CUR Gen. Cat. 1999SGR00356Final version received: January 10, 2003  相似文献   

6.
In this paper we study graphs all of whose star sets induce cliques or co-cliques. We show that the star sets of every tree for each eigenvalue are independent sets. Among other results it is shown that each star set of a connected graph G with three distinct eigenvalues induces a clique if and only if G=K1,2 or K2,…,2. It is also proved that stars are the only graphs with three distinct eigenvalues having a star partition with independent star sets.  相似文献   

7.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

8.
图G=(V,E)的Tutte集定义为X■V(G)满足ω_o(G-X)一|X|=def(G).若不存在Tutte集Y■X,则称X为图G的极大Tutte集.通过找极大extreme集和D-图的极大独立集给出一般图G的找极大Tutte集的两个有效算法,并给出结论:X■V(G)是二部图G的极大Tutte集当且仅当X为二部图G的最小覆盖,从而得到找二部图G的极大Tutte集的一个有效算法.  相似文献   

9.
We consider the minimum number of cliques needed to partition the edge set of D(G), the distance multigraph of a simple graph G. Equivalently, we seek to minimize the number of elements needed to label the vertices of a simple graph G by sets so that the distance between two vertices equals the cardinality of the intersection of their labels. We use a fractional analogue of this parameter to find lower bounds for the distance multigraphs of various classes of graphs. Some of the bounds are shown to be exact.  相似文献   

10.
Locating and total dominating sets in trees   总被引:1,自引:0,他引:1  
A set S of vertices in a graph G=(V,E) is a total dominating set of G if every vertex of V is adjacent to a vertex in S. We consider total dominating sets of minimum cardinality which have the additional property that distinct vertices of V are totally dominated by distinct subsets of the total dominating set.  相似文献   

11.
We develop constructive techniques to show that non-isomorphic 3-connected matroids that are representable over a fixed finite field and that have the same Tutte polynomial abound. In particular, for most prime powers q, we construct infinite families of sets of 3-connected matroids for which the matroids in a given set are non-isomorphic, are representable over GF(q), and have the same Tutte polynomial. Furthermore, the cardinalities of the sets of matroids in a given family grow exponentially as a function of rank, and there are many such families.In Memory of Gian-Carlo Rota  相似文献   

12.
We observe that a formula given by Negami [Polynomial invariants of graphs, Trans. Amer. Math. Soc. 299 (1987) 601-622] for the Tutte polynomial of a k-sum of two graphs generalizes to a colored Tutte polynomial. Consequently, an algorithm of Andrzejak [An algorithm for the Tutte polynomials of graphs of bounded treewidth, Discrete Math. 190 (1998) 39-54] may be directly adapted to compute the colored Tutte polynomial of a graph of bounded treewidth in polynomial time. This result has also been proven by Makowsky [Colored Tutte polynomials and Kauffman brackets for graphs of bounded tree width, Discrete Appl. Math. 145 (2005) 276-290], using a different algorithm based on logical techniques.  相似文献   

13.
Let G be a connected (di)graph. A vertex w is said to strongly resolve a pair u,v of vertices of G if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set W of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of W. The smallest cardinality of a strong resolving set for G is called the strong dimension of G. It is shown that the problem of finding the strong dimension of a connected graph can be transformed to the problem of finding the vertex covering number of a graph. Moreover, it is shown that computing this invariant is NP-hard. Related invariants for directed graphs are defined and studied.  相似文献   

14.
We study the space of pictures of a graph G in complex projective d-space. The main result is that the homology groups (with integer coefficients) of are completely determined by the Tutte polynomial of G. One application is a criterion in terms of the Tutte polynomial for independence in the d-parallel matroids studied in combinatorial rigidity theory. For certain special graphs called orchards, the picture space is smooth and has the structure of an iterated projective bundle. We give a Borel presentation of the cohomology ring of the picture space of an orchard, and use this presentation to develop an analogue of the classical Schubert calculus.  相似文献   

15.
We prove that if a graph H has the same Tutte polynomial as the line graph of a d-regular, d-edge-connected graph, then H is the line graph of a d-regular graph. Using this result, we prove that the line graph of a regular complete t-partite graph is uniquely determined by its Tutte polynomial. We prove the same result for the line graph of any complete bipartite graph.  相似文献   

16.
If sk denotes the number of stable sets of cardinality k in graph G, and α(G) is the size of a maximum stable set, then is the independence polynomial of G [I. Gutman, F. Harary, Generalizations of the matching polynomial, Utilitas Math. 24 (1983) 97-106]. A graph G is very well-covered [O. Favaron, Very well-covered graphs, Discrete Math. 42 (1982) 177-187] if it has no isolated vertices, its order equals 2α(G) and it is well-covered, i.e., all its maximal independent sets are of the same size [M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98]. For instance, appending a single pendant edge to each vertex of G yields a very well-covered graph, which we denote by G*. Under certain conditions, any well-covered graph equals G* for some G [A. Finbow, B. Hartnell, R.J. Nowakowski, A characterization of well-covered graphs of girth 5 or greater, J. Combin. Theory Ser B 57 (1993) 44-68].The root of the smallest modulus of the independence polynomial of any graph is real [J.I. Brown, K. Dilcher, R.J. Nowakowski, Roots of independence polynomials of well-covered graphs, J. Algebraic Combin. 11 (2000) 197-210]. The location of the roots of the independence polynomial in the complex plane, and the multiplicity of the root of the smallest modulus are investigated in a number of articles.In this paper we establish formulae connecting the coefficients of I(G;x) and I(G*;x), which allow us to show that the number of roots of I(G;x) is equal to the number of roots of I(G*;x) different from -1, which appears as a root of multiplicity α(G*)-α(G) for I(G*;x). We also prove that the real roots of I(G*;x) are in [-1,-1/2α(G*)), while for a general graph of order n we show that its roots lie in |z|>1/(2n-1).Hoede and Li [Clique polynomials and independent set polynomials of graphs, Discrete Math. 125 (1994) 219-228] posed the problem of finding graphs that can be uniquely defined by their clique polynomials (clique-unique graphs). Stevanovic [Clique polynomials of threshold graphs, Univ. Beograd Publ. Elektrotehn. Fac., Ser. Mat. 8 (1997) 84-87] proved that threshold graphs are clique-unique. Here, we demonstrate that the independence polynomial distinguishes well-covered spiders among well-covered trees.  相似文献   

17.
In matching theory, barrier sets (also known as Tutte sets) have been studied extensively due to their connection to maximum matchings in a graph. For a root θ of the matching polynomial, we define θ-barrier and θ-extreme sets. We prove a generalized Berge-Tutte formula and give a characterization for the set of all θ-special vertices in a graph.  相似文献   

18.
We consider the (Ihara) zeta functions of line graphs, middle graphs and total graphs of a regular graph and their (regular or irregular) covering graphs. Let L(G), M(G) and T(G) denote the line, middle and total graph of G, respectively. We show that the line, middle and total graph of a (regular and irregular, respectively) covering of a graph G is a (regular and irregular, respectively) covering of L(G), M(G) and T(G), respectively. For a regular graph G, we express the zeta functions of the line, middle and total graph of any (regular or irregular) covering of G in terms of the characteristic polynomial of the covering. Also, the complexities of the line, middle and total graph of any (regular or irregular) covering of G are computed. Furthermore, we discuss the L-functions of the line, middle and total graph of a regular graph G.  相似文献   

19.
We shall consider graphs (hypergraphs) without loops and multiple edges. Let ? be a family of so called prohibited graphs and ex (n, ?) denote the maximum number of edges (hyperedges) a graph (hypergraph) onn vertices can have without containing subgraphs from ?. A graph (hyper-graph) will be called supersaturated if it has more edges than ex (n, ?). IfG hasn vertices and ex (n, ?)+k edges (hyperedges), then it always contains prohibited subgraphs. The basic question investigated here is: At least how many copies ofL ε ? must occur in a graphG n onn vertices with ex (n, ?)+k edges (hyperedges)?  相似文献   

20.
A subset X of the vertex set of a graph G is a secure dominating set of G if X is a dominating set of G and if, for each vertex u not in X, there is a neighbouring vertex v of u in X such that the swap set (X/{v}) ? {u} is again a dominating set of G, in which case v is called a defender. The secure domination number of G is the cardinality of a smallest secure dominating set of G. In this paper, we show that every graph of minimum degree at least 2 possesses a minimum secure dominating set in which all vertices are defenders. We also characterise the classes of graphs that have secure domination numbers 1, 2 and 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号