首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
An intersection graph of rectangles in the (x, y)-plane with sides parallel to the axes is obtained by representing each rectangle by a vertex and connecting two vertices by an edge if and only if the corresponding rectangles intersect. This paper describes algorithms for two problems on intersection graphs of rectangles in the plane. One is an O(n log n) algorithm for finding the connected components of an intersection graph of n rectangles. This algorithm is optimal to within a constant factor. The other is an O(n log n) algorithm for finding a maximum clique of such a graph. It seems interesting that the maximum clique problem is polynomially solvable, because other related problems, such as the maximum stable set problem and the minimum clique cover problem, are known to be NP-complete for intersection graphs of rectangles. Furthermore, we briefly show that the k-colorability problem on intersection graphs of rectangles is NP-complete.  相似文献   

2.
Given positive integers m,n, we consider the graphs Gn and Gm,n whose simplicial complexes of complete subgraphs are the well-known matching complex Mn and chessboard complex Mm,n. Those are the matching and chessboard graphs. We determine which matching and chessboard graphs are clique-Helly. If the parameters are small enough, we show that these graphs (even if not clique-Helly) are homotopy equivalent to their clique graphs. We determine the clique behavior of the chessboard graph Gm,n in terms of m and n, and show that Gm,n is clique-divergent if and only if it is not clique-Helly. We give partial results for the clique behavior of the matching graph Gn.  相似文献   

3.
We introduce the notion of k-hyperclique complexes, i.e., the largest simplicial complexes on the set [n] with a fixed k-skeleton. These simplicial complexes are a higher-dimensional analogue of clique (or flag) complexes (case k = 2) and they are a rich new class of simplicial complexes. We show that Dirac’s theorem on chordal graphs has a higher-dimensional analogue in which graphs and clique complexes get replaced, respectively, by simplicial matroids and k-hyperclique complexes. We prove also a higher-dimensional analogue of Stanley’s reformulation of Dirac’s theorem on chordal graphs.   相似文献   

4.
Both the line graph and the clique graph are defined as intersection graphs of certain families of complete subgraphs of a graph. We generalize this concept. By a k-edge of a graph we mean a complete subgraph with k vertices or a clique with fewer than k vertices. The k-edge graph Δk(G) of a graph G is defined as the intersection graph of the set of all k-edges of G. The following three problems are investigated for k-edge graphs. The first is the characterization problem. Second, sets of graphs closed under the k-edge graph operator are found. The third problem is the question of convergence: What happens to a graph if we take iterated k-edge graphs?  相似文献   

5.
The clique graph K(G) of a simple graph G is the intersection graph of its maximal complete subgraphs, and we define iterated clique graphs by K0(G)=G, Kn+1(G)=K(Kn(G)). We say that two graphs are homotopy equivalent if their simplicial complexes of complete subgraphs are so. From known results, it can be easily inferred that Kn(G) is homotopy equivalent to G for every n if G belongs to the class of clique-Helly graphs or to the class of dismantlable graphs. However, in both of these cases the collection of iterated clique graphs is finite up to isomorphism. In this paper, we show two infinite classes of clique-divergent graphs that satisfy G?Kn(G) for all n, moreover Kn(G) and G are simple-homotopy equivalent. We provide some results on simple-homotopy type that are of independent interest.  相似文献   

6.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. It has recently been shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. In this paper, we extend this result by showing that for any positive integerp, 3≤p any clique decomposisitioof a graph of ordern obtained by removing maximal cliques of order at leastp one by one until none remain, in which case the remaining edges are removed one by one, has at mostt p-1( n ) cliques. Heret p-1( n ) is the number of edges in the Turán graph of ordern, which has no complete subgraphs of orderp. In connection with greedy clique decompositions, P. Winkler conjectured that for any greedy clique decompositionC of a graphG of ordern the sum over the number of vertices in each clique ofC is at mostn 2/2. We prove this conjecture forK 4-free graphs and show that in the case of equality forC andG there are only two possibilities:
  1. G?K n/2,n/2
  2. G is complete 3-partite, where each part hasn/3 vertices.
We show that in either caseC is completely determined.  相似文献   

7.
A caterpillar graph is a tree in which the removal of all pendant vertices results in a chordless path. In this work, we determine the number of maximal independent sets (mis) in caterpillar graphs. For a general graph, this problem is #Pcomplete. We provide a polynomial time algorithm to generate the whole family of mis in a caterpillar graph. We also characterize the independent graph (intersection graph of mis) and the clique graph (intersection graph of cliques) of complete caterpillar graphs.  相似文献   

8.
To a set of n points in the plane, one can associate a graph that has less than n2 vertices and has the property that k-cliques in the graph correspond vertex sets of convex k-gons in the point set. We prove an upper bound of 2k-1 on the size of a planar point set for which the graph has chromatic number k, matching the bound conjectured by Szekeres for the clique number. Constructions of Erd?s and Szekeres are shown to yield graphs that have very low chromatic number. The constructions are carried out in the context of pseudoline arrangements.  相似文献   

9.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. We have recently shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. A greedy max-clique decomposition is a particular kind cf greedy clique decomposition where maximum cliques are removed, instead of just maximal ones. In this paper, we show that any greedy max-clique decompositionC of a graph of ordern has, wheren(C) is the number of vertices inC.  相似文献   

10.
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.  相似文献   

11.
 It is well known that the comparability graph of any partially ordered set of n elements contains either a clique or an independent set of size at least . In this note we show that any graph of n vertices which is the union of two comparability graphs on the same vertex set, contains either a clique or an independent set of size at least . On the other hand, there exist such graphs for which the size of any clique or independent set is at most n 0.4118. Similar results are obtained for graphs which are unions of a fixed number k comparability graphs. We also show that the same bounds hold for unions of perfect graphs. Received: November 1, 1999 Final version received: December 1, 2000  相似文献   

12.
Covering all edges of a graph by a minimum number of cliques is a well known NP-hard problem. For the parameter k being the maximal number of cliques to be used, the problem becomes fixed parameter tractable. However, assuming the Exponential Time Hypothesis, there is no kernel of subexponential size in the worst-case.We study the average kernel size for random intersection graphs with n vertices, edge probability p, and clique covers of size k. We consider the well-known set of reduction rules of Gramm, Guo, Hüffner, and Niedermeier (2009) [17] and show that with high probability they reduce the graph completely if p is bounded away from 1 and k<clogn for some constant c>0. This shows that for large probabilistic graph classes like random intersection graphs the expected kernel size can be substantially smaller than the known exponential worst-case bounds.  相似文献   

13.
Tutte has defined n-connection for matroids and proved a connected graph is n-connected if and only if its polygon matroid is n-connected. In this paper we introduce a new notion of connection in graphs, called n-biconnection, and prove an analogous theorem for graphs and their bicircular matroids. Results concerning 3-biconnected graphs are also presented.  相似文献   

14.
We introduce the notion of the boundary clique and the k-overlap clique graph and prove the following: Every incomplete chordal graph has two nonadjacent simplicial vertices lying in boundary cliques. An incomplete chordal graph G is k-connected if and only if the k-overlap clique graph gk(G) is connected. We give an algorithm to construct a clique tree of a connected chordal graph and characterize clique trees of connected chordal graphs using the algorithm.  相似文献   

15.
In a seminal paper, Erd?s and Rényi identified a sharp threshold for connectivity of the random graph G(n,p). In particular, they showed that if p?logn/n then G(n,p) is almost always connected, and if p?logn/n then G(n,p) is almost always disconnected, as n.The clique complexX(H) of a graph H is the simplicial complex with all complete subgraphs of H as its faces. In contrast to the zeroth homology group of X(H), which measures the number of connected components of H, the higher dimensional homology groups of X(H) do not correspond to monotone graph properties. There are nevertheless higher dimensional analogues of the Erd?s-Rényi Theorem.We study here the higher homology groups of X(G(n,p)). For k>0 we show the following. If p=nα, with α<−1/k or α>−1/(2k+1), then the kth homology group of X(G(n,p)) is almost always vanishing, and if −1/k<α<−1/(k+1), then it is almost always nonvanishing.We also give estimates for the expected rank of homology, and exhibit explicit nontrivial classes in the nonvanishing regime. These estimates suggest that almost all d-dimensional clique complexes have only one nonvanishing dimension of homology, and we cannot rule out the possibility that they are homotopy equivalent to wedges of a spheres.  相似文献   

16.
A clique in a graph is a complete subgraph maximal under inclusion. The clique graph of a graph is the intersection graph of its cliques. A graph is self-clique when it is isomorphic to its clique graph. A circular-arc graph is the intersection graph of a family of arcs of a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. In this note, we describe all the self-clique Helly circular-arc graphs.  相似文献   

17.
In this paper we consider the k-fixed-endpoint path cover problem on proper interval graphs, which is a generalization of the path cover problem. Given a graph G and a set T of k vertices, a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint simple paths that covers the vertices of G, such that the vertices of T are all endpoints of these paths. The goal is to compute a k-fixed-endpoint path cover of G with minimum cardinality. We propose an optimal algorithm for this problem with runtime O(n), where n is the number of intervals in G. This algorithm is based on the Stair Normal Interval Representation (SNIR) matrix that characterizes proper interval graphs. In this characterization, every maximal clique of the graph is represented by one matrix element; the proposed algorithm uses this structural property, in order to determine directly the paths in an optimal solution.  相似文献   

18.
A graph is called “perfectly orderable” if its vertices can be ordered in such a way that, for each induced subgraph F, a certain “greedy” coloring heuristic delivers an optimal coloring of F. No polynomial-time algorithm to recognize these graphs is known. We present four classes of perfectly orderable graphs: Welsh–Powell perfect graphs, Matula perfect graphs, graphs of Dilworth number at most three, and unions of two threshold graphs. Graphs in each of the first three classes are recognizable in a polynomial time. In every graph that belongs to one of the first two classes, we can find a largest clique and an optimal coloring in a linear time.  相似文献   

19.
Chordal graphs were characterized as those graphs having a tree, called clique tree, whose vertices are the cliques of the graph and for every vertex in the graph, the set of cliques that contain it form a subtree of clique tree. In this work, we study the relationship between the clique trees of a chordal graph and its subgraphs. We will prove that clique trees can be described locally and all clique trees of a graph can be obtained from clique trees of subgraphs. In particular, we study the leafage of chordal graphs, that is the minimum number of leaves among the clique trees of the graph. It is known that interval graphs are chordal graphs without 3-asteroidals. We will prove a generalization of this result using the framework developed in the present article. We prove that in a clique tree that realizes the leafage, for every vertex of degree at least 3, and every choice of 3 branches incident to it, there is a 3asteroidal in these branches.  相似文献   

20.
One consequence of the graph minor theorem is that for every k there exists a finite obstruction set Obs(TW?k). However, relatively little is known about these sets, and very few general obstructions are known. The ones that are known are the cliques, and graphs which are formed by removing a few edges from a clique. This paper gives several general constructions of minimal forbidden minors which are sparse in the sense that the ratio of the treewidth to the number of vertices n does not approach 1 as n approaches infinity. We accomplish this by a novel combination of using brambles to provide lower bounds and achievable sets to demonstrate upper bounds. Additionally, we determine the exact treewidth of other basic graph constructions which are not minimal forbidden minors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号