首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Let C(X,T) be the group of continuous functions of a compact Hausdorff space X to the unit circle of the complex plane T with the pointwise multiplication as the composition law. We investigate how the structure of C(X,T) determines the topology of X. In particular, which group isomorphisms H between the groups C(X,T) and C(Y,T) imply the existence of a continuous map h of Y into X such that H is canonically represented by h. Among other results, it is proved that C(X,T) determines X module a biseparating group isomorphism and, when X is first countable, the automatic continuity and representation as Banach-Stone maps for biseparating group isomorphisms is also obtained.  相似文献   

2.
The Isbell, compact-open and point-open topologies on the set C(X,R) of continuous real-valued maps can be represented as the dual topologies with respect to some collections α(X) of compact families of open subsets of a topological space X. Those α(X) for which addition is jointly continuous at the zero function in Cα(X,R) are characterized, and sufficient conditions for translations to be continuous are found. As a result, collections α(X) for which Cα(X,R) is a topological vector space are defined canonically. The Isbell topology coincides with this vector space topology if and only if X is infraconsonant. Examples based on measure theoretic methods, that Cα(X,R) can be strictly finer than the compact-open topology, are given. To our knowledge, this is the first example of a splitting group topology strictly finer than the compact-open topology.  相似文献   

3.
We characterize those topological spaces Y for which the Isbell and finest splitting topologies on the set C(X,Y) of all continuous functions from X into Y coincide for all topological spaces X. We also consider the same question for the coincidence of the restriction of the finest splitting topology on the upper semicontinuous set-valued functions to C(X,Y) and the finest splitting topology on C(X,Y). In the first case, the spaces in question are, after identifying points that are in each others closures, subsets of the two point Sierpiński space, which gives a converse and generalization of a result of S. Dolecki, G.H. Greco, and A. Lechicki. In the second case, the spaces in question are, after identifying points that are in each others closures, order bases for bounded complete continuous DCPOs with the Scott topology.  相似文献   

4.
The complete Boolean homomorphisms from the category algebra C(X) of a complete matrix space X to the category algebra C(Y) of a Baire topological space Y are characterized as those σ-homomorphisms which are induced by continuous maps from dense G8-subsets of Y into X. This result is used to deduce a series of related results in topology and measure theory (some of which are well-known). Finally a similar result for the complete Boolean homomorphisms from the category algebra C(X) of a compact Hausdorff space X tothe category algebra C(Y) of a Baire topological space Y is proved.  相似文献   

5.
Let C(X,Y) be the set of all continuous functions from a topological space X into a topological space Y. We find conditions on X that make the Isbell and fine Isbell topologies on C(X,Y) equal for all Y. For zero-dimensional spaces X, we show there is a space Z such that the coincidence of the Isbell and fine Isbell topologies on C(X,Z) implies the coincidence on C(X,Y) for all Y. We then consider the question of when the Isbell and fine Isbell topologies coincide on the set of continuous real-valued functions. Our results are similar to results established for consonant spaces.  相似文献   

6.
Let π:XY be a surjective continuous map between Tychonoff spaces. The map π induces, by composition, an injective morphism C(Y)→C(X) between the corresponding rings of real-valued continuous functions, and this morphism allows us to consider C(Y) as a subring of C(X). This paper deals with finiteness properties of the ring extension C(Y)⊆C(X) in relation to topological properties of the map π:XY. The main result says that, for X a compact subset of Rn, the extension C(Y)⊆C(X) is integral if and only if X decomposes into a finite union of closed subsets such that π is injective on each one of them.  相似文献   

7.
This study looks at some subgroups of the group H(C(X)) of homeomorphisms on the space C(X) of continuous real-valued functions on a topological space X, where C(X) has the compact-open topology. The main result shows that, for certain spaces X, the subgroup of H(C(X)) generated by the algebraic and vertical homeomorphisms on C(X) is dense in H(C(X)) with the pointwise topology. Also, for X equal to the unit interval, a subgroup of H(C(X)) is developed using integration of the members of C(X), and this subgroup is used as an example and to illustrate certain properties that subgroups of H(C(X)) can have.  相似文献   

8.
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set FX and every point xX?F, there exist fCp(X,G) and gG?{e} such that f(x)=g and f(F)⊆{e}; (b) G?-regular provided that there exists gG?{e} such that, for each closed set FX and every point xX?F, one can find fCp(X,G) with f(x)=g and f(F)⊆{e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel'ski? as a particular case (when G=R).We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G?-regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP.We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.  相似文献   

9.
Conditions on a topological space X under which the space C(X,R) of continuous real-valued maps with the Isbell topology κ is a topological group (topological vector space) are investigated. It is proved that the addition is jointly continuous at the zero function in Cκ(X,R) if and only if X is infraconsonant. This property is (formally) weaker than consonance, which implies that the Isbell and the compact-open topologies coincide. It is shown the translations are continuous in Cκ(X,R) if and only if the Isbell topology coincides with the fine Isbell topology. It is proved that these topologies coincide if X is prime (that is, with at most one non-isolated point), but do not even for some sums of two consonant prime spaces.  相似文献   

10.
Let X be a locally compact Polish space and G a non-discrete Polish ANR group. By C(X,G), we denote the topological group of all continuous maps endowed with the Whitney (graph) topology and by Cc(X,G) the subgroup consisting of all maps with compact support. It is known that if X is compact and non-discrete then the space C(X,G) is an l2-manifold. In this article we show that if X is non-compact and not end-discrete then Cc(X,G) is an (R×l2)-manifold, and moreover the pair (C(X,G),Cc(X,G)) is locally homeomorphic to the pair of the box and the small box powers of l2.  相似文献   

11.
For a Tychonoff space X, we denote by Cλ(X) the space of all real-valued continuous functions on X with set-open topology. In this paper, we study the topological-algebraic properties of Cλ(X). Our main results state that (1) Cλ(X) is a topological vector space (a topological group) iff λ is a family of C-compact sets and Cλ(X)=Cλ(X), where λ consists of all C-compact subsets of every set of λ. In particular, if Cλ(X) is a topological group, then the set-open topology coincides with the topology of uniform convergence on a family λ; (2) a topological group Cλ(X) is ω-narrow iff λ is a family of metrizable compact subsets of X.  相似文献   

12.
LetX be a topological vector space,Y an ordered topological vector space andL(X,Y) the space of all linear and continuous mappings fromX intoY. The hereditary order-convex cover [K] h of a subsetK ofL(X,Y) is defined by [K] h ={AL(X,Y):Ax∈[Kx] for allxX}, where[Kx] is the order-convex ofKx. In this paper we study the hereditary order-convex cover of a subset ofL(X,Y). We show how this cover can be constructed in specific cases and investigate its structural and topological properties. Our results extend to the spaceL(X,Y) some of the known properties of the convex hull of subsets ofX *.  相似文献   

13.
14.
Let (X,τ) be a topological space and let ρ be a metric defined on X. We shall say that (X,τ) is fragmented by ρ if whenever ε>0 and A is a nonempty subset of X there is a τ-open set U such that UA≠∅ and ρ−diam(UA)<ε. In this paper we consider the notion of fragmentability, and its generalisation σ-fragmentability, in the setting of topological groups and metric-valued function spaces. We show that in the presence of Baireness fragmentability of a topological group is very close to metrizability of that group. We also show that for a compact Hausdorff space X, σ-fragmentability of (C(X),‖⋅) implies that the space Cp(X;M) of all continuous functions from X into a metric space M, endowed with the topology of pointwise convergence on X, is fragmented by a metric whose topology is at least as strong as the uniform topology on C(X;M). The primary tool used is that of topological games.  相似文献   

15.
Let be a surjective continuous map between compact Hausdorff spaces. The map π induces, by composition, an injective morphism C(Y)→C(X) between the corresponding rings of real-valued continuous functions, and this morphism allows us to consider C(Y) as a subring of C(X). This paper deals with algebraic properties of the ring extension C(Y)⊆C(X) in relation to topological properties of the map . We prove that if the extension C(Y)⊆C(X) has a primitive element, i.e., C(X)=C(Y)[f], then it is a finite extension and, consequently, the map π is locally injective. Moreover, for each primitive element f we consider the ideal and prove that, for a connected space Y, If is a principal ideal if and only if is a trivial covering.  相似文献   

16.
In this paper, we study the fuzzy almost continuous convergence of fuzzy nets on the set FAC(X, Y) of all fuzzy almost continuous functions of a fuzzy topological space X into another Y. Also, we introduce the notions of fuzzy splitting and fuzzy jointly continuous topologies on the set FAC(X, Y) and study some of its basic properties.  相似文献   

17.
Let Cα(X,Y) be the set of all continuous functions from X to Y endowed with the set-open topology where α is a hereditarily closed, compact network on X which is closed under finite unions. We proved that the density of the space Cα(X,Y) is at most iw(X)⋅d(Y) where iw(X) denotes the i-weight of the Tychonoff space X, and d(Y) denotes the density of the space Y when Y is an equiconnected space with equiconnecting function Ψ, and Y has a base consists of Ψ-convex subsets of Y. We also prove that the equiconnectedness of the space Y cannot be replaced with pathwise connectedness of Y. In fact, it is shown that for each infinite cardinal κ, there is a pathwise connected space Y such that π-weight of Y is κ, but Souslin number of the space Ck([0,1],Y) is κ2.  相似文献   

18.
Let X be a Banach space. Then there is a locally convex topology for X, the “Right topology,” such that a linear map T, from X into a Banach space Y, is weakly compact, precisely when T is a continuous map from X, equipped with the “Right” topology, into Y equipped with the norm topology. When T is only sequentially continuous with respect to the Right topology, it is said to be pseudo weakly compact. This notion is related to Pelczynski's Property (V).  相似文献   

19.
This paper studies the compact-open topology on the set KC(X) of all real-valued functions defined on a Tychonoff space, which are continuous on compact subsets of X. In addition to metrizability, separability and second countability of this topology on KC(X), various kinds of topological properties of this topology are studied in detail. Actually the motivation for studying the compact-open topology on KC(X) lies in the attempt of having a simpler proof for the characterization of a completeness property of the compact-open topology on C(X), the set of all real-valued continuous functions on X.  相似文献   

20.
Let X be a completely regular Hausdorff space and Cb(X) be the space of all real-valued bounded continuous functions on X, endowed with the strict topology βσ. We study topological properties of continuous and weakly compact operators from Cb(X) to a locally convex Hausdorff space in terms of their representing vector measures. In particular, Alexandrov representation type theorems are derived. Moreover, a Yosida-Hewitt type decomposition for weakly compact operators on Cb(X) is given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号