首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structural changes of two linear polyethylenes, LPEs, with different molar mass and of two homogeneous copolymers of ethylene and 1‐octene with comparable comonomer content but different molar mass were monitored during heating at 10 °C per minute using synchrotron radiation SAXS. Two sets of samples, cooled at 0.1 °C per minute and quenched in liquid nitrogen, respectively, were studied. All LPEs display surface melting between room temperature and the end melting temperature, whereas complete melting, according to lamellar thickness, only occurs at the highest temperatures where DSC displays a pronounced melting peak. There is recrystallization followed by isothermal lamellar thickening if annealing steps are inserted. The lamellar crystals of slowly cooled homogeneous copolymers melt in the reverse order of their formation, that is, crystals melt according to their thickness. Quenching creates unstable crystals through the cocrystallization of ethylene sequences with different length. These crystals repeatedly melt and co‐recrystallize during heating. The exothermic heat due to recrystallization partially compensates the endothermic heat due to melting resulting in a narrow overall DSC melting peak with its maximum at a higher temperature than the melting peak of slowly cooled copolymers. With increasing temperature, the crystallinity of quenched copolymers overtakes the one of slowly cooled samples due to co‐recrystallization by which an overcrowding of leaving chains at the crystal surfaces is avoided. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1975–1991, 2000  相似文献   

2.
The double melting behavior of poly(butylene terephthalate) (PBT) was studied with differential scanning calorimetry (DSC) and wide‐angle X‐ray analysis. DSC melting curves of melt‐crystallized PBT samples, which we prepared by cooling from the melt (250 °C) at various cooling rates, showed two endothermic peaks and an exothermic peak located between these melting peaks. The cooling rate effect on these peaks was investigated. The melt‐crystallized PBT sample cooled at 24 K min?1 was heated at a rate of 1 K min?1, and its diffraction patterns were obtained successively at a rate of one pattern per minute with an X‐ray measurement system equipped with a position‐sensitive proportional counter. The diffraction pattern did not change in the melting process, except for the change in its peak height. This suggests that the double melting behavior does not originate from a change in the crystal structure. The temperature dependence of the diffraction intensity was obtained from the diffraction patterns. With increasing temperature, the intensity decreased gradually in the low‐temperature region and then increased distinctly before a steep decrease due to the final melting. In other words, the temperature‐dependence curve of the diffraction intensity showed a peak that is interpreted as proof of the recrystallization in the melting process. The peak temperature was 216 °C. The temperature‐dependence curve of the enthalpy change obtained by the integration of the DSC curve almost coincided with that of the diffraction intensity. The double melting behavior in the heating process of PBT is concluded to originate from the increase of crystallinity, that is, recrystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2005–2015, 2001  相似文献   

3.
A differential scanning calorimeter (DSC) was used to study the melting behavior of drawn nylon 6 yarns which were prevented from shrinking during heating. The DSC curves exhibit a single melting peak at a higher temperature instead of the double peaks which, as reported previously, were observed in the unconstrained state. The curve is explained quantitatively in terms of the perfecting of the original crystals followed by monotonic melting of these crystals during heating. The single peak results from the absence of the partial melting–recrystallization process which plays an important role in the appearance of double peaks. The temperature of the melting peak for the constrained sample increases linearly with draw ratio, and is unaffected by drawing temperature and by annealing at constant length after drawing. The elevation of the melting temperature is discussed on the basis of the entropy effects predicted theoretically by Zachmann. Thermal analysis of constrained samples has proved to be useful for detecting oriented crystals which coexist with unoriented ones.  相似文献   

4.
The melting behavior of poly(L ‐lactic acid) film crystallized from the glassy state, either isothermally or nonisothermally, was studied by wide angle X‐ray diffraction (WAXD), small angle X‐ray scattering (SAXS), differential scanning calorimetry (DSC), and temperature‐modulated differential scanning calorimetry (TMDSC). Up to three crystallization and two melting peaks were observed. It was concluded that these effects could largely be accounted for on the basis of a “melt‐recrystallization” mechanism. When molecular weight is low, two melting endotherms are readily observed. But, without TMDSC, the double melting phenomena of high molecular weight PLLA is often masked by an exotherm just prior to the final melting, as metastable crystals undergo melt‐recrystallization during heating in the DSC. The appearance of a double cold‐crystallization peak during the DSC heating scan of amorphous PLLA film is the net effect of cold crystallization and melt‐recrystallization of metastable crystals formed during the initial cold crystallization. Samples cold‐crystallized at 80 and 90 °C did not exhibit a long period, although substantial crystallinity developed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3200–3214, 2006  相似文献   

5.
In this work, multiwalled carbon nanotubes (MWNTs) were surface‐modified and grafted with poly(L ‐lactide) to obtain poly(L ‐lactide)‐grafted MWNTs (i.e. MWNTs‐g‐PLLA). Films of the PLLA/MWNTs‐g‐PLLA nanocomposites were then prepared by a solution casting method to investigate the effects of the MWNTs‐g‐PLLA on nonisothermal and isothermal melt‐crystallizations of the PLLA matrix using DSC and TMDSC. DSC data found that MWNTs significantly enhanced the nonisothermal melt‐crystallization from the melt and the cold‐crystallization rates of PLLA on the subsequent heating. Temperature‐modulated differential scanning calorimetry (TMDSC) analysis on the quenched PLLA nanocomposites found that, in addition to an exothermic cold‐crystallization peak in the range of 80–120 °C, an exothermic peak in the range of 150–165 °C, attributed to recrystallization, appeared before the main melting peak in the total and nonreversing heat flow curves. The presence of the recrystallization peak signified the ongoing process of crystal perfection and, if any, the formation of secondary crystals during the heating scan. Double melting endotherms appeared for the isothermally melt‐crystallized PLLA samples at 110 °C. TMDSC analysis found that the double lamellar thickness model, other than the melting‐recrystallization model, was responsible for the double melting peaks in PLLA nanocomposites. Polarized optical microscopy images found that the nucleation rate of PLLA was enhanced by MWNTs. TMDSC analysis found that the incorporation of MWNTs caused PLLA to decrease the heat‐capacity increase (namely, ΔCp) and the Cp at glass transition temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1870–1881, 2007  相似文献   

6.
The complex thermal behavior of poly(l ‐lactic acid) films crystallized from the melt, either isothermally or nonisothermally, was studied by differential scanning calorimetry (DSC), wide angle X‐ray diffraction, and small angle X‐ray scattering. The variation of the thermal behavior with crystallization temperature, time, and cooling rate was documented and analyzed. After nonisothermal crystallization at low cooling rates that develop high crystallinity, an obvious double melting peak appears at modest heating rates (e.g., 10 °C/min). At higher heating rates, these samples exhibit only single melting. However, an unusual form of double melting occurs under the majority of the conditions studied under either isothermal or nonisothermal conditions. In this case, double melting is marked by the appearance of a recrystallization exotherm just prior to the final melting that obscures the observation of the melting of the crystals formed during the initial crystallization process. The occurrence of double melting in melt‐crystallized samples was concluded to be the result of a melt‐recrystallization process occurring during the subsequent DSC heating scan; it is a function of crystalline perfection, not the initial crystallinity, nor whether or not the crystallization reached completion at the crystallization temperature. Many other very interesting observations are also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3378–3391, 2006  相似文献   

7.
In this work, the melting behaviors of nonisothermally and isothermally melt‐crystallized poly(L ‐lactic acid) (PLLA) from the melt were investigated with differential scanning calorimetry (DSC) and temperature‐modulated differential scanning calorimetry (TMDSC). The isothermal melt crystallizations of PLLA at a temperature in the range of 100–110 °C for 120 min or at 110 °C for a time in the range of 10–180 min appeared to exhibit double melting peaks in the DSC heating curves of 10 °C/min. TMDSC analysis revealed that the melting–recrystallization mechanism dominated the formation of the double melting peaks in PLLA samples following melt crystallizations at 110 °C for a shorter time (≤30 min) or at a lower temperature (100, 103, or 105 °C) for 120 min, whereas the double lamellar thickness model dominated the formation of the double melting peaks in those PLLA samples crystallized at a higher temperature (108 or 110 °C) for 120 min or at 110 °C for a longer time (≥45 min). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 466–474, 2007  相似文献   

8.
Copolyester was synthesized and characterized as having 89.9 mol % ethylene succinate units and 10.1 mol % butylene succinate units in a random sequence, as revealed by NMR. Isothermal crystallization kinetics was studied in the temperature range (Tc) from 30 to 73 °C using differential scanning calorimetry (DSC). The melting behavior after isothermal crystallization was investigated using DSC by varying the Tc, the heating rate and the crystallization time. DSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are associated primarily with the melting of lamellar crystals with various stabilities. As the Tc increases, the contribution of recrystallization slowly decreases and finally disappears. A Hoffman‐Weeks linear plot gives an equilibrium melting temperature of 107.0 °C. The spherulite growth of this copolyester from 80 to 20 °C at a cooling rate of 2 or 4 °C/min was monitored and recorded using an optical microscope equipped with a CCD camera. Continuous growth rates between melting and glass transition temperatures can be obtained after curve‐fitting procedures. These data fit well with those data points measured in the isothermal experiments. These data were analyzed with the Hoffman and Lauritzen theory. A regime II → III transition was detected at around 52 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2431–2442, 2008  相似文献   

9.
The melting behavior of poly(butylene terephthalate) (PBT) has been investigated, and a simulation has been performed to determine whether the multiple melting endotherms observed during the thermal analysis of PBT can be explained by the simultaneous melting and recrystallization of an initial distribution of crystal melting temperatures that contains only one maximum and two inflection points. Specimens that were cooled at constant rates from the melt showed between one and three melting endotherms upon heating in a differential scanning calorimeter (DSC). The position and breadth of the crystallization exotherms upon cooling from the melt and small-angle x-ray scattering showed that as the cooling rate is increased, the distribution of melting temperatures broadens and shifts to lower temperatures. By combining temperature-dependent recrystallization with an initial distribution of melting temperatures, simulated DSC curves were produced that agreed well with experimental DSC curves. In instances of triple peaked curves, the high temperature peak was due to crystals formed during the scanning process, and the middle and low temperature peaks were due to crystals originally present in the material. Satisfactory agreement between the experimental and simulated curves was found without considering additional crystallization from the amorphous regions during the scanning process.  相似文献   

10.
徐军 《高分子科学》2017,35(12):1552-1560
Differential scanning calorimetry (DSC) has been widely applied to study crystallization and melting of materials. However, for polymeric lamellar crystals, the melting thermogram during heating process usually exhibits a broad endothermic peak or even multiple endotherms, which may result from changes of metastability via recrystallization process. Sometimes, the recrystallization exotherm cannot be observed due to its overlapping with the melting endotherm. In this work, we employed a step heating procedure consisting of successive heating and temperature holding stages to measure the metastability of isothermally crystallized poly(butylene succinate) (PBS) crystals. With this approach we could gain the fraction of crystals melted at different temperature ranges and quantitatively detect the melting-recrystallization behavior. The melting-recrystallization behavior depends on the polymer chain structure and the crystallization temperature. For instance, PBS block copolymer hardly shows recrystallization behavior while PBS oligomer and high molecular weight PBS homopolymer demonstrate remarkable melting-recrystallization phenomenon. High molecular weight PBS isothermally crystallized in the low temperature range shows multiple melting-recrystallization while those isothermally crystallized at elevated temperatures do not exhibit observable recrystallization behavior. Furthermore, the melting endotherms were fitted via the melting kinetics equations. The original isothermally crystallized lamellae demonstrate quite different melting kinetics from the recrystallized lamellar crystals that melt at the highest temperature range, which is attributed to the different degrees of stabilization. Finally, the mechanism of melting-recrystallization is briefly discussed. We propose that apparent melt-recrystallization phenomenon be observed when melting of preformed lamellar crystals and recrystallization of thicker lamellae have similar free energy barrier.  相似文献   

11.
Differential scanning calorimetry (DSC) has been widely applied to study crystallization and melting of materials.However,for polymeric lamellar crystals,the melting thermogram during heating process usually exhibits a broad endothermic peak or even multiple endotherms,which may result from changes of metastability via recrystallization process.Sometimes,the recrystallization exotherm cannot be observed due to its overlapping with the melting endotherm.In this work,we employed a step heating procedure consisting of successive heating and temperature holding stages to measure the metastability of isothermally crystallized poly(butylene succinate) (PBS) crystals.With this approach we could gain the fraction of crystals melted at different temperature ranges and quantitatively detect the melting-recrystallization behavior.The melting-recrystallization behavior depends on the polymer chain structure and the crystallization temperature.For instance,PBS block copolymer hardly shows recrystallization behavior while PBS oligomer and high molecular weight PBS homopolymer demonstrate remarkable melting-recrystallization phenomenon.High molecular weight PBS isothermally crystallized in the low temperature range shows multiple melting-recrystallization while those isothermally crystallized at elevated temperatures do not exhibit observable recrystallization behavior.Furthermore,the melting endotherms were fitted via the melting kinetics equations.The original isothermally crystallized lamellae demonstrate quite different melting kinetics from the recrystallized lamellar crystals that melt at the highest temperature range,which is attributed to the different degrees of stabilization.Finally,the mechanism of melting-recrystallization is briefly discussed.We propose that apparent meltrecrystallization phenomenon be observed when melting of preformed lamellar crystals and recrystallization of thicker lamellae have similar free energy barrier.  相似文献   

12.
The melting behavior of isothermally crystallized poly(butylene succinate) (PBS) has been investigated using differential scanning calorimetry (DSC) and wide‐angle X‐ray analysis. The samples crystallized between 80°C to 100°C show middle endotherm at the position just before the high exotherm, while the others under 80°C show two endotherms (low and high). From the results of the melting peak vs. crystallization temperature plot, it was suggested that the middle endotherm corresponds to the melting process of the original crystallites and the high endotherms to the melting process of the recrystallized ones. As the DSC heating rate was increased, the peak temperature of the low and middle endotherms increased and that of the high endotherm decreased, indicating that the low endotherm was due to the original crystallites as well as the middle endotherm. Consequently, in the heating scan of PBS, the existence of two kinds of morphologically different crystallites as well as the process of melting and recrystallization becomes evident. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1357–1366, 1999  相似文献   

13.
The polymerization of a cyclic butylene terephthalate (CBT) oligomer was studied as a function of temperature (T=200 and 260°C, respectively) by modulated DSC (MDSC). The first heating was followed by cooling after various holding times (5, 15 and 30 min) prior to the second heating which ended always at T=260°C. This allowed us to study the crystallization and melting behavior of the resulting polybutylene terephthalate (PBT), as well. In contrary to the usual belief, the CBT polymerization is exothermic and the related process is superimposed to that of the CBT melting. The melting behavior of the PBT was affected by the polymerization mode (performed below or above the melting temperature of the PBT product) of the CBT. Annealing above the melting temperature of PBT yielded a product featuring double melting. This was attributed to the presence of crystallites with different degrees of perfection. The crystals perfection which occurred via recrystallization/remelting was manifested by a pronounced exothermic peak in the non-reversing trace.  相似文献   

14.
The melting behavior of isotactic polystyrene, crystallized from the melt and from dilute solutions in trans-decalin, has been studied by differential scanning calorimetry and solubility measurements. The melting curves show 1, 2, or 3 melting endotherms. At large supercooling, crystallization from the melt produces a small melting endotherm just above the crystallization temperature Tc. This peak originates from secondary crystallization of melt trapped within the spherulites. The next melting endotherm is related to the normal primary crystallization process. Its peak temperature increases linearly with Tc, yielding an extrapolated value for the equilibrium melting temperature Tc° of 242 ± 1°C as found before. By self-seeding, crystallization from the melt could be performed at much higher temperature to obtain melting temperatures as high as 243°C, giving rise to doubt about the value of Tc° found by extrapolation. For normal values of Tc and heating rate, an extra endotherm appears on the melting curve. Its peak temperature is the same for both melt-crystallized and solution-crystallized samples, and independent of Tc, but rises with decreasing heating rate. From the effects of heating rate and partial scanning on the ratio of peak areas and of previous heat treatment on dissolution temperature, it is concluded that this peak arises from the second one by continuous melting and recrystallization during the scan.  相似文献   

15.
A semicrystalline ethylene‐hexene copolymer (PEH) was subjected to a simple thermal treatment procedure as follows: the sample was isothermally crystallized at a certain isothermal crystallization temperature from melt, and then was quenched in liquid nitrogen. Quintuple melting peaks could be observed in heating scan of the sample by using differential scanning calorimeter (DSC). Particularly, an intriguing endothermic peak (termed as Peak 0) was found to locate at about 45 °C. The multiple melting behaviors for this semicrystalline ethylene‐hexene copolymer were investigated in details by using DSC. Wide‐angle X‐ray diffraction (WAXD) technique was applied to examine the crystal forms to provide complementary information for interpreting the multiple melting behaviors. Convincing results indicated that Peak 0 was due to the melting of crystals formed at room temperature from the much highly branched ethylene sequences. Direct heating scans from isothermal crystallization temperature (Tc, 104–118 °C) were examined for comparison, which indicated that the multiple melting behaviors depended on isothermal crystallization temperature and time. A triple melting behavior could be observed after a relatively short isothermal crystallization time at a low Tc (104–112 °C), which could be attributed to a combination of melting of two coexistent lamellar stack populations with different lamellar thicknesses and the melting‐recrystallization‐remelting (mrr) event. A dual melting behavior could be observed for isothermal crystallization with both a long enough time at a low Tc and a short or long time at an intermediate Tc (114 °C), which was ascribed to two different crystal populations. At a high Tc (116–118 °C), crystallizable ethylene sequences were so few that only one single broad melting peak could be observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2100–2115, 2008  相似文献   

16.
4-Acetoxy 4′-carboxy biphenyl has been polymerized from solution, the bulk melt, and in constrained thin films, all below the melting point of the monomer as measured by differential scanning calorimetry (DSC). An isothermal sublimation–recrystallization–melting (and chemical change)–polymerization–crystallization process is proposed. From solution and in the thin films, single crystals consisting of ca. 100 Å thick lamellae are observed, with evidence for monomer addition–reaction on the end (top and bottom) surfaces. The bulk samples are fibrous, the “fibers” consisting of whisker-like single crystals. The polymer is highly heat and radiation (electron beam) resistant, with numerous successive electron diffraction (ED) patterns from the same crystal or sheared sample permitting comparison of the changes in ED patterns with transitions seen by DSC at ca. 350, 530, and 590°C. Phase I (a = 7.8, b = 5.5, c = 10.8 Å), a possible phase II (a = 15.6, b = 3.6 Å c = unknown), and a phase III (a = 9.0, b = 5.2 = √3a, c = 10.8 Å). Phases I and II are seen in samples polymerized at temperatures at and below 310°C; phase III is observed in samples polymerized at and above 350°C and in sheared samples. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
Multiple melting behaviors have been studied extensively. Syndiotactic polyStyrene(SPS), in 6 crystalline form exhibited such phenomena. It was suggested that arecrystallization process occurred since it has been clarified that no other modificationswere observed during the DSC heating scanl. In this study, a series of SPS samples in 0form were prepared by cooling from the melt at various cooling ratesl and the factors thatinfluence the multiple melting behavior of SPS in 0 form were exam…  相似文献   

18.
This article investigated the melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) (PBS) and its copolyester (PBSR) modified with rosin maleopimaric acid anhydride, using wide‐angle X‐ray diffraction, differential scanning calorimeter (DSC), and polarized optical microscope. Subsequent DSC scans of isothermally crystallized PBS and PBSR exhibited two melting endotherms, respectively, which was due to the melt‐recrystallization process occurring during the DSC scans. The equilibrium melting point of PBSR (125.9 °C) was lower than that of PBS (139 °C). The commonly used Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the model combining Avrami equation and Ozawa equation was employed. The result showed a consistent trend in the crystallization process. The crystallization rate was decreased, the perfection of crystals was decreased, the recrystallization was reduced, and the spherulitic morphologies were changed when the huge hydrogenated phenanthrene ring was added into the chain of PBS. The activation energy (ΔE) for the isothermal crystallization process determined by Arrhenius method was 255.9 kJ/mol for PBS and 345.7 kJ/mol for PBSR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 900–913, 2006  相似文献   

19.
The influence of the order of polymer melt on the subsequent crystallization and melting has been carefully studied. The experimental data show that the order of isotactic polypropylene (iPP) melt decreases with increases in the fusion temperature. For an iPP sample isothermally crystallized at 130 °C for half an hour, the degree of order of melt is higher when the fusion temperature is lower than about 170.5 °C, hence the lamellae formed in a rapid cooling process are perfect. If the fusion temperature is not higher than 167 °C, some thicker lamellae can exist in the melt. The melting of these unmelted lamellae and those lamellae recrystallized in the cooling process result in double endotherms. On the other hand, when the fusion temperature is higher than 170.5 °C, the order of the iPP melt decreases greatly; thus, the lamellae formed in the following cooling process are imperfect. At a lower heating rate, the recrystallization or reorganization of these imperfect lamellae also leads to double melting endotherms. Received: June 16, 2000 Accepted: October 16, 2000  相似文献   

20.
Precise melting and crystallization temperatures of extended-chain and folded-chain crystals of form I and folded-chain crystals of form II poly(vinylidene fluoride) under high pressure have been obtained by microdifferential thermal analysis (DTA). Upon heating at pressures above 4000 kg/cm2, the micro-DTA thermogram of form II crystallized from the melt at atmospheric pressure shows melting of the form II structure and the melting of the folded-chain and extended-chain crystals of form I, formed through recrystallization processes. These features were clarified by supplemental methods. The bandwidth seen in electron micrographs of the extended-chain crystal of form I obtained by crystallization under high pressure was in the range of 1500 to 2000 Å. At atmospheric pressure, the extended-chain crystal of form I melted at 207°C, approximately 17°C higher than the folded-chain crystal of form I and 31°C higher than the folded-chain crystal of form II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号