首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A sensitive amperometric sensor for norfloxacin (NF) was introduced. The receptor layer was prepared by molecularly imprinted photopolymerization of acrylamide and trimethylolpropane trimethacrylate on the surface of a gold electrode. The binding mechanism of the molecularly imprinted polymer was explored by ultraviolet (UV) and infrared (IR) spectroscopy. The chemosensor was characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance (EI), and scanning electron microscopy (SEM). The electrode prepared by photopolymerization has a better recognition ability to template molecules than that of electropolymerization and NIP. Some parameters affecting sensor response were optimized. Norfloxacin was detected by measurements of an amperometric it curve. The linear relationships between current and logarithmic concentration are obtained from 1.0?×?10?9 to 1.0?×?10?3?mol?L?1. The detection limit of the sensor was 1.0?×?10?10?mol?L?1. The proposed method is sensitive, simple, and cheap, and is applied to detect NF in human urine successfully.
Figure
Amperometric i-t curves of MIPs electrode  相似文献   

2.
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept. Imprinted monoliths were synthesized by use of a mixture of R-mandelic acid (template), 4-vinylpyridine, ethylene glycol dimethacrylate, and several metal ions as pivot between the template and functional monomer. A ternary mixture of dimethyl sulfoxide–dimethylformamide–[BMIM]BF4 containing metal ions was used as the porogenic system. Separation of the enantiomers of rac-mandelic acid was successfully achieved on the MIP thus obtained, with resolution of 1.87, whereas no enantiomer separation was observed on the imprinted monolithic column in the absence of metal ions. The effects of polymerization conditions, including the nature of the metal ion and the ratios of template to metal ions and template to functional monomer, on the chiral separation of mandelic acid were investigated. The results reveal that use of metal ions as a pivot, in combination with ionic liquid, is an effective method for preparation of a highly efficient MIP stationary phase for chiral separation.
Figure
A new chiral stationary phase based on molecularly imprinted polymers (MIP) was prepared in ionic liquid by use of the metal pivot concept  相似文献   

3.
Frontal polymerization was successfully applied, for the first time, to obtain molecularly imprinted polymers (MIPs). The method provides a solvent-free polymerization mode, and the reaction can be completed in 30 min. By this approach, MIPs were synthesized using a mixture of levofloxacin (template), methacrylic acid, and divinylbenzene. The effect of template concentration and the amount of comonomer on the imprinting effect of the resulting MIPs was investigated. The textural and morphological parameters of the MIP particles were also characterized by mercury intrusion porosimetry, nitrogen adsorption isotherms, and scanning electron microscopy, providing evidence concerning median pore diameter, pore volumes, and pore size distributions. The levofloxacin-imprinted polymer formed in frontal polymerization mode showed high selectivity, with an imprinting factor of 5.78. The results suggest that frontal polymerization provides an alternative means to prepare MIPs that are difficult to synthesize and may open up new perspectives in the field of MIPs.
Figure
?  相似文献   

4.
We describe a nanosized Cd(II)-imprinted polymer that was prepared from 4-vinyl pyridine (the functional monomer), ethyleneglycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the radical initiator), neocuproine (the ligand), and Cd(II) (the template ion) by precipitation polymerization in acetonitrile as the solvent. The imprinted polymer was characterized by X-ray diffraction, thermogravimetric analysis, differential thermal analysis, and scanning electron microscopy. The maximum adsorption capacity of the nanosized sorbent was calculated to be 64 mg g?1. Cadmium(II) was then quantified by FAAS. The relative standard deviation and limit of detection are 4.2 % and 0.2 μg L?1, respectively. The imprinted polymer displays improve selectivity for Cd(II) ions over a range of competing metal ions with the same charge and similar ionic radius. This nanosized sorbent is an efficient solid phase for selective extraction and preconcentration of Cd(II) in complex matrices. The method was successfully applied to the trace determination of Cd(II) in food and water samples.
Figure
We describe a nanosized ion-imprinted polymer (IIP) for the selective preconcentration of Cd(II) ions. The nanosized-IIP was characterized by X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric and differential thermal analysis, and by scanning electron microscopy.  相似文献   

5.
The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10?8 to 10?4 mol L?1, and the detection limit is 5.10?8 mol L?1.
Figure
This work describes the grafting of a molecularly imprinted polymer (MIP) film by combining diazonium surface chemistry and surface-initiated photopolymerization. The MIP grafts specifically and selectively recognize quercetin in pure solution in THF and in real green tea infusion.  相似文献   

6.
We report on the synthesis of cesium ion-imprinted polymer nanoparticles that were prepared by a precipitation polymerization strategy using dibenzo-24-crown-8 ether as a selective crown ether, methacrylic acid as the functional monomer, ethyleneglycol dimethacrylate as the crosslinker, and AIBN as the radical initiator. The prepared sorbents have a diameter of 50–90 nm and display highly selective binding capability for Cs(I) ion, with rapid adsorption and desorption. The maximum adsorption capacity is 50 mg g?1, and the preconcentration factor is around 100 at pH 9.0. Cesium ion was then determined by flame photometry with a detection limit (3σ) of 0.7 ng mL?1 and with a standard deviation of 0.9 %.
Figure
A novel nano-sized ion imprinted polymer has been prepared for separation and determination of Cs(I) ions in different water samples. The results indicated that the use of imprinted nanoparticles has many advantages, such as selectivity, reusability, application in the complex matrixes and preconcentration of the initial ions in dilute solutions.  相似文献   

7.
In this work, we will present a novel approach for the detection of small molecules with molecularly imprinted polymer (MIP)-type receptors. This heat-transfer method (HTM) is based on the change in heat-transfer resistance imposed upon binding of target molecules to the MIP nanocavities. Simultaneously with that technique, the impedance is measured to validate the results. For proof-of-principle purposes, aluminum electrodes are functionalized with MIP particles, and l-nicotine measurements are performed in phosphate-buffered saline solutions. To determine if this could be extended to other templates, histamine and serotonin samples in buffer solutions are also studied. The developed sensor platform is proven to be specific for a variety of target molecules, which is in agreement with impedance spectroscopy reference tests. In addition, detection limits in the nanomolar range could be achieved, which is well within the physiologically relevant concentration regime. These limits are comparable to impedance spectroscopy, which is considered one of the state-of-the-art techniques for the analysis of small molecules with MIPs. As a first demonstration of the applicability in biological samples, measurements are performed on saliva samples spiked with l-nicotine. In summary, the combination of MIPs with HTM as a novel readout technique enables fast and low-cost measurements in buffer solutions with the possibility of extending to biological samples.
Figure
Heat-transfer based detection with molecularly imprinted polymers  相似文献   

8.
9.
The replacement of antibodies by molecularly imprinted polymers (MIPs) has been investigated for many decades. However, indirect protocols (including natural primary and secondary antibodies) are still utilized to evaluate the ability of MIP thin films to recognize target molecules. MIPs can be prepared as either a thin film or as particles, and cavities that are complementary to the template can be generated on their surfaces. We have prepared thin film MIPs and particle MIPs prepared by solvent evaporation and phase inversion, respectively, from solutions of poly(ethylene-co-vinyl alcohol) (pEVAL) in the presence of the target analytes amylase, lysozyme, and lipase. These were first adsorbed on MIP thin films and by MIP particles that contain fluorescent quantum dots. Sandwich fluoroimmunoassays were then conducted to quantify them in MIP-coated 96-well microplates. The method was applied to determine amylase in saliva, and results were compared with a commercial analytical system.
Figure
The recognition of amylase-imprinted poly(ethylene-co-vinyl alcohol)/quantum dots composite nanoparticles to amylase on the amylase-imprinted poly(ethylene-co-vinyl alcohol) coated 96-well microplates.  相似文献   

10.
We describe a nanostructured ion-imprinted polymer (IIP) for the selective preconcentration of Ni(II) ions. It was obtained by bulk polymerization from 2-vinylpyridine (the functional monomer), ethylene glycol dimethacrylate (the cross-linker), 2,2′-azobisisobutyronitrile (the initiator), alizarin red S (the nickel-binding ligand), and nickel (the template ion) in acetonitrile solution. The IIP particles were characterized by elemental analysis, X-ray diffraction, Fourier transform IR spectroscopy, thermogravimetric and differential thermal analysis, and by scanning electron microscopy. Imprinted Ni(II) ions were removed from the polymeric structure using 5 % HCl as the eluting solvent. The material is capable of selectively binding Ni(II) from solutions at pH values between (pH 8.0 being best). Both the sorption and desorption process occur within 5 min. The maximum sorbent capacity of the ion imprinted polymer is 73 mg g?1. Following desorption, Ni(II) was determined by FAAS, with relative standard deviation and limit of detection of 3.4 % and 0.15 ng mL?1, respectively. The method was applied to the determination of nickel in certified reference materials (soil and polymetallic gold ore), fish, vegetables, river sediments, and river water.
Figure
In this study, a novel nano structure Ni(II) ion imprinted polymer has been synthesized for faster extraction of Ni(II) ions from various matrices. This SPE technique was successfully applied for separation, determination, and preconcentration of nickel from food and environmental samples. This method is simple, rapid, and reliable and it is found to be a selective and sensitive method for determination of trace levels of Ni(II) ions.  相似文献   

11.
Molecular imprinting technology is an attractive approach of creating recognition sites in polymeric materials by using the templating approach found in many natural systems. These recognition sites have memory to the target molecule that enables selective recognition of the template species. Molecularly imprinted polymers (MIPs) have been used in a wide range of areas including separation and isolation, catalysis, chemical sensing, and drug delivery. This review aims at highlight the recent advances in the application of molecular imprinting technology for inorganic and small organic anion recognition in aqueous media.
Figure
The application of molecular imprinting technology for anion recognition in aqueous media  相似文献   

12.
We have combined the molecular imprinting and the layer-by-layer assembly techniques to obtain molecularly imprint polymers (MIPs) for the electrochemical determination of p-nitrophenol (p-NPh). Silica microspheres functionalized with thiol groups and gold nanoparticles (Au-NPs) were assembled on a gold electrode surface layer by layer. The electrode was then immersed into a solution of pyrrole and p-NPh (the template), and electropolymerization led to the creation of a polymer-modified surface. After the removal of the silica spheres and the template, electrochemical impedance spectroscopy and differential pulse voltammetry (DPV) were employed to characterize the surface. The results demonstrated the successful fabrication of macroporous MIPs embedded with Au-NPs on the gold electrode. The effects of monomer concentration and scan rate on the performance of the electrode were optimized. Excellent recognition capacity is found for p-NPh over chemically similar species. The DPV peak current is linearly related to concentration of p-NPh in the 0.1 μM to 1.4 mM range, with a 0.1 μM limit of detection (at S/N?=?3).
Figure
Molecularly imprinted polymers (MIPs) and nanomaterials were combined to prepare a novel macroporous structured MIPs based electrochemical sensor for the investigation of an environmental pollutant, p-nitrophenol (p-NPh). The sensor exhibited a fast binding dynamics, good specific adsorption capacities, and high selective recognition to p-NPh.  相似文献   

13.
Thermal preparation of lysozyme-imprinted microspheres was firstly investigated by using biocompatible ionic liquid (IL) as a thermal stabilizer. The imprinted microspheres made with IL could obtain the good recognition ability to template protein, whereas the imprinted polymer synthesized in the absence of it had a similar adsorption capacity to the non-imprinted one. Furthermore, the preparation conditions of imprinted polymers (MIPs) including the content of IL, temperature of polymerization, and types of functional monomers and crosslinkers were systematically analyzed via circular dichroism spectrum and activity assay. The results illustrated that using hydroxyethyl acrylate as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, 5 % IL as the stabilizer, and 75 °C as the reaction temperature could retain the structure of template protein as much as possible. The obtained MIPs showed excellent recognition ability to the template protein with the separation factor and selectivity factor value of 4.30 and 2.21, respectively. Consequently, it is an effective way to accurately imprint and separate template protein by cooperatively using circular dichroism spectroscopy and activity assay during the preparation of protein MIPs. The method of utilizing IL to stabilizing protein at high temperature would offer a good opportunity for various technologies to improve the development of macromolecules imprinting. Graphical Abstract
?  相似文献   

14.
Molecularly imprinted solid phase extraction is an excellent tool for the preconcentration of trace analytes. We report on the preparation of such a material by firstly graft-polymerizing methacrylic acid onto the surface of silica gel particles, and then imprinting it by using phenol as a template and ethylene glycol diglycidyl ether as a crosslinker. The binding and recognition of phenol were examined by static methods. The binding capacity at saturation is 160?mg·g?1 in 9?h at pH 6. The selectivity coefficients relative to o-cresol and chlorophenol are 22 and 23, respectively. The pH value has a large effect. Adsorbed phenol can be eluted easily from the imprint with diluted sodium hydroxide solution, and the material is reusable.
Figure
Binding isotherms of NIP-PMAA/SiO2 and MIP-PMAA/SiO2 towards phenol, o-cresol and chlorophenol. The binding amount of NIP-PMAA/SiO2 towards three species is equivalent nearly. However, it would be quite different after imprinted with phenol. The binding amount of MIP-PMAA/SiO2 towards phenol doesn??t change, but the binding amount of MIP-PMAA/SiO2 towards o-cresol and chlorophenol is much lower than that towards phenol. The facts mentioned above prove that MIP-PMAA/SiO2 has high affinity, high recognition ability and special selectivity for phenol. This result shows that the surface molecular imprinting technique is feasible and successful  相似文献   

15.
Fragment-imprinted microspheres (FIMs) were synthesized by suspension polymerization of 4-sulfa-6-chloropyrimidine (the template), methacrylic acid and styrene (the mixed functional monomers), divinylbenzene (the crosslinker), and azobisisobutyronitrile (the initiator). The optimum conditions were obtained by an orthogonal experiment. After removal of the templates, the microspheres serve as a material to fairly specifically bind sulfonamides, the absorption capacity being 6.32 mg g–1, whereas the absorption by non-imprinted microspheres is 1.68 mg g?1. A method was worked out for the simultaneous determination of five sulfonamides by solid phase extraction (using the FIMs) coupled to HPLC, and applied to analyze milk samples. The recoveries are within 87.6 and 96.5 %, with relative standard deviations between 1.25 and 2.89 %.
Figure
Graphical abstract showed that fragment imprinted-solid phase extraction had the best selective adsorption performance of the five sulfonamide antibiotics compare with C18, Silica and Florisil column. It was satisfactory by using fragment imprinted microspheres as sorbents of solid phase extraction for enriching and separating target compounds from complex matrices.  相似文献   

16.
The fragmentations of [AA + M]+ complexes, where AA = Phe, Tyr, Trp, or His, and M is a monovalent metal (Li, Na, or Ag), have been exhaustively studied through collision-induced dissociation (CID) and through deuterium labeling. Dissociations of the Li- and Ag-containing complexes gave a large number of fragment ions; by contrast, the sodium/amino acid complexes have lower binding energies, and dissociation resulted in much simpler spectra, with loss of the entire ligand dominating. Unambiguous assignments of these fragment ions were made and formation mechanisms are proposed. Of particular interest are fragmentations in which the charge was retained on the organic fragment and the metal was lost, either as a metal hydride (AgH) or hydroxide (LiOH) or as the silver atom (Ag?).
Caption for Graphical Abstract
CID products of Li+, Na+, and Ag+ complexes of Phe, Tyr, Trp, and His are reported and mechanisms by which they are formed are proposed.  相似文献   

17.
A new ruthenium ion imprinted polymer was prepared from the Ru(III) 2-thiobarbituric acid complex (the template), methacrylic acid or acrylamide (the functional monomers), and ethylene glycol dimethacrylate (the cross-linking agent) using 2,2′-azobisisobutyronitrile as the radical initiator. The ion imprinted polymer was characterized and used as a selective sorbent for the solid phase extraction of Ru(III) ions. The effects of type of functional monomer, sample volume, solution pH and flow rate on the extraction efficiency were studied in the dynamic mode. Ru(III) ion was quantitatively retained on the sorbents in the pH range from 3.5 to 10, and can be eluted with 4 mol L?1 aqueous ammonia. The affinity of Ru(III) for the ion imprinted polymer based on the acrylamide monomer is weaker than that for the polymer based on the methacrylic acid monomer, which therefore was used in interference studies and in analytical applications. Following extraction of Ru(III) ions with the imprint and their subsequent elution from the polymer with aqueous ammonia, Ru(III) was detected by electrothermal atomic absorption spectrometry with a detection limit of 0.21 ng mL?1. The method was successfully applied to the determination of trace amounts of Ru(III) in water, waste, road dust and platinum ore (CRM SARM 76) with a reproducibility (expressed as RSD) below 6.4 %.
Figure
The new ion imprinted polymer was prepared and used for the separation of ruthenium from water and most complex environmental samples, such as road dust and platinum ore (CRM SARM 76) prior ETAAS determination.  相似文献   

18.
We report on an organic–inorganic hybrid material that was double imprinted with the insecticide carbaryl and the anti-inflammatory drug naproxen by a single-step method and that can serve for selective microextraction of the two analytes. The materials, in the form of monolithic columns, were characterized by scanning electron microscopy and Fourier transform IR spectra. A simple, rapid and sensitive method was then developed for the simultaneous determination of carbaryl and naproxen in lettuce and river water using these columns for microextraction, HPLC for separation, and a diode array for UV detection. The limits of detection (at S/N?=?3) and quantification (at S/N?=?10) are in the ranges of 2.5 – 8.8 μg kg?1 and 2.3 – 8.0 μg L?1 for lettuce and Yangtze River water, respectively. The recoveries of this method range from 93.0 to 108 % (in case of analyzing lettuce and river water), and relative standard deviations are <8.9 %.
Figure
An organic–inorganic hybrid carbaryl and naproxen imprinted monolithic column was synthesized, characterized and applied. The derivated double-template imprinted polymer showed high selectivity and enrichment ability for templates. It can be used as an alternative technique for extracting carbaryl and naproxen from complex samples.  相似文献   

19.
We have prepared molecularly imprinted beads with molecular recognition capability for target molecules containing the penicillanic acid substructure. They were prepared by (a) grafting mesoporous silica beads with 6-aminopenicillanic acid as the mimic template, (b) filling the pores with a polymerized mixture of methacrylic acid and trimethylolpropane trimethacrylate, and (c) removing the silica support with ammonium fluoride. The resulting imprinted beads showed good molecular recognition capability for various penicillanic species, while antibiotics such as cephalosporins or chloramphenicol were poorly recognized. The imprinted beads were used to extract penicillin V, nafcillin, oxacillin, cloxacillin and dicloxacillin from skimmed and deproteinized milk in the concentration range of 5–100 μg·L?1. The extracts were then analyzed by micellar electrokinetic chromatography by applying reverse polarity staking as an in-capillary preconcentration step, and this resulted in a fast and affordable method within the MRL levels, characterized by minimal pretreatment steps and recoveries of 64–90 %.
Figure
Penicillanic acid-imprinted beads prepared in preformed porous silica by an imprinting & etching approach show selectivity towards β-lactams antibiotics. Molecularly imprinted solid phase extraction/micellar electrokinetic chromatography coupled with in-capillary preconcentration resulted in a fast and affordable method for penicillins in milk at MRL levels.  相似文献   

20.
We present hybrid films consisting of a composite prepared from polystyrene (PS) and titanium dioxide (titania; TiO2) and molecularly imprinted with 1-pyrenebutyric acid (PBA). The interaction of PBA with the polymer is shown to occur via binding of the carboxylic group to TiO2 and hydrophobic interaction of the pyrene moiety with the PS network. We investigated the effects of the PS fraction on morphology, imprinting properties, and guest binding. The template could be completely removed by incubating the films in an acetonitrile solution of pyrene, which is due to the stronger π–π interaction between PBA and pyrene than the interaction between PBA and its binding site. A guest binding study with pyrene, 1-aminopyrene, pyrenemethanol, and anthracene-9-carboxylic acid showed that the hybrid films possessed selectivity and much higher binding capacity for PBA. This study demonstrates the first case of clear PS-assisted imprinting, where the π–π interaction of the template with a linear (non-crosslinked) polymer creates selective binding sites and enhances the binding capacity. This is a driving force for guest binding in addition to the interaction of the template/analyte with TiO2. All molecularly imprinted films displayed better binding, repeatability and reversibility compared to the respective non-imprinted films.
Figure
Illustration of the fabricated polystyrene/titania hybrids imprinted with 1-pyrenebutyric acid providing the interaction between the organic and inorganic components through the pyrene and carboxylic moieties  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号