首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclobutenediones 5 disubstituted with HO (a), MeO (b), EtO (c), i-PrO (d), t-BuO (e), PhO (f), 4-MeOC6H4O (g), 4-O2NC6H4O (h), and 3,4-bridging OCH2CH2O (i) substituents upon laser flash photolysis gave the corresponding bisketenes 6a-i, as detected by their distinctive doublet IR absorptions between 2075 and 2106 and 2116 and 2140 cm-1. The reactivities in ring closure back to the cyclobutenediones were greatest for the group 6b-e, with the highest rate constant of 2.95 x 10(7) s-1 at 25 degrees C for 6e (RO = t-BuO) in isooctane, were less for 6a (RO = OH, k = 2.57 x 10(6) s-1 in CH3CN), while 6f-i were the least reactive, with the lowest rate constant of 3.8 x 10(4) s-1 in CH3CN for 6h (RO = 4-O2NC6H4O). The significantly reduced rate constants for 6f-i are attributed to diminution of the electron-donating ability of oxygen to the cyclobutenediones 5f-h by the ArO substituents compared to alkoxy groups and to angle strain in the bridged product cyclobutenedione 5i. The reactivities of the ArO-substituted bisketenes 6f-h in CH3CN varied by a factor of 50 and gave an excellent correlation of the observed rate constants log k with the sigma p constants of the aryl substituents. Computational studies at the B3LYP/6-31G(d) level of ring-closure barriers are consistent with the measured reactivities. Photolysis of squaric acid (5a) in solution provides a convenient preparation of deltic acid (7).  相似文献   

2.
[Structure: see text]. Ferrocenylketene (1) is calculated to be destabilized by 1.6 kcal/mol relative to phenylketene (10) by B3LYP isodesmic comparison to the corresponding alkenes. Ketene 1 generated by Wolff rearrangement in CH3CN is identified by the IR band at 2119 cm(-1) and has a rate constant for reaction with n-BuNH2 less than that for 10 by a factor of 5. 1,2-Bisferrocenyl-1,2-bisketene 18 and 1-ferrocenyl-2-trimethylsilyl-1,2-bisketene 21 were prepared by photochemical ring opening of the corresponding cyclobutenediones, and 18 undergoes rapid ring closure 67 times faster than the corresponding 1,2-diphenyl-1,2-bisketene, while bisketene 21 is longer lived than 18 by a factor of 3.2 x 10(4).  相似文献   

3.
The [5+2] and [6+2] cycloaddition reactions of vinylaziridines and vinylazetidines with ketenes generated photochemically from chromium(0) and molybdenum(0) Fischer carbene complexes have been investigated. These processes constitute a straightforward and efficient route to azepanones and azocinones, respectively. The peculiar electronic properties of the metalated ketenes allow for the introduction of electron‐rich substituents in the final cycloadducts, a difficult task using conventional organic chemistry procedures. The versatility of the process is demonstrated by using Cr0 Fischer bis(carbene) complexes as metalated bis(ketene) precursors. These species produce tethered bis(azepanone)s in a single step under mild reaction conditions. Density functional theory calculations point to a stepwise reaction pathway through the initial nucleophilic attack of the nitrogen atom of the aziridine on the metalated ketene, followed by ring closure of the zwitterionic intermediate formed.  相似文献   

4.
Substitutional doping of perylene with two boron atoms at the 6b/12b positions and two oxygen or nitrogen atoms at the 1/7 positions has been achieved. The modular synthesis route developed for these bis‐BO‐ ( 3 ) and bis‐BN‐perylenes ( 5 ) starts from the readily accessible borinic acid derivative of the doubly brominated 9,10‐dihydro‐9,10‐diboraanthracene (DBA), 1,5‐Br2DBA(OH)2. A Stille‐type reaction first furnishes the alkynyl‐substituted species 1,5‐(RCC)2DBA(OH)2 ( 2 ), which undergo double ring closure to afford 3 via the gold‐catalyzed addition of the O?H bonds to the C≡C bonds. Treatment of 2 with MeN(SiMe3)2 leads to aminoborane intermediates 1,5‐(RCC)2DBA(N(H)Me)2, which can be ring‐closed to give 5 in a similar manner as in the case of 3 . Different substituents R (such as Me, tBuPh) can be introduced at the 2/8 positions of the perylene core. The products obtained undergo reversible reduction and are efficient blue/turquoise emitters.  相似文献   

5.
Experiment and theory have been used to study reactive alkyne pi complexes, intermediates in anti-Markovnikov alkyne hydration by CpRu bis(phosphine) catalysts with heterocyclic substituents. Each heterocycle accepts a hydrogen bond from an acetylene C-H, as revealed by NMR coupling constants between alkyne 13C and 1H nuclei as well as between alkyne 13C and pyridine 15N (2hJCN). Moreover, further alkyne transformations occur at temperatures from 50 to 90 degrees C below what is needed to convert a control compound without the heterocycles.  相似文献   

6.
In order to study the effect of steric bulk on the vanadium coordination geometry in O, N‐chelated vanadium oxo (bis)phenolates, six different ortho‐aminophenolate ligands have been used. The ortho‐aminophenolate system was changed at three different places, i.e. 1) the second ortho position (C6) of the arene ring (R), 2) the substituents at the amino nitrogen (R′ and R″), and 3) the benzylic carbon atom (R*). The phenols were used in the preparation of the vanadium oxo (bis)phenolate complexes. In order to study whether it is possible to predict geometrical features of these vanadium complexes, UV/Vis, solution and frozen state EPR and 14N ESEEM spectroscopic data was measured and compared to the structural features of four structurally characterized vanadium oxo (bis)phenolates. Unfortunately, it turned out that is was not possible to correlate the EPR parameters, the UV/Vis HOMO‐LUMO transitions or 14N hyperfine couplings to the structural parameters.  相似文献   

7.
A series of new (silylamino)phosphines that contain sterically bulky silyl groups on nitrogen were prepared by deprotonation/substitution reactions of the hindered disilylamines t-BuR(2)Si(Me(3)Si)NH (1, R = Me; 2, R = Ph) and (Et(3)Si)(2)NH (3). Sequential treatment of the N-lithio derivatives of 1-3 with PCl(3) or PhPCl(2) and MeLi gave the corresponding (silylamino)phosphines t-BuR(2)Si(Me(3)Si)NP(R')Me (5, R = Me, R' = Ph; 6, R = Ph, R' = Me) and (Et(3)Si)(2)NP(R)Me (11, R = Me; 12, R = Ph) in high yields. Two of the P-chloro intermediates t-BuR(2)Si(Me(3)Si)NP(Ph)Cl (7, R = Ph; 9, R = Me) were also isolated and fully characterized. Hydrolysis of 7 afforded the crystalline PH-substituted aminophosphine oxide t-BuPh(2)SiN(H)P(Ph)(=O)H (10). Thermal decomposition of 7 occurred with elimination of Me(3)SiCl and formation of a novel P(2)N(2) four-membered ring system (36) that contains both P(III) and P(V) centers. Reactions of the N-lithio derivatives of amines 1 and 2 with phosphorus trihalides afforded the thermally stable -PF(2) derivatives t-BuR(2)Si(Me(3)Si)NPF(2) (13, R = Me; 14, R = Ph) and the unstable -PCl(2) analogue 17 (R = Ph). Reduction (using LiAlH(4)) of the SiPh-substituted dihalophosphines 14 and 17 gave the unstable parent phosphine t-BuPh(2)Si(Me(3)Si)NPH(2) (15). The P-organo-substituted (silylamino)phosphines underwent oxidative bromination to afford high yields of the corresponding N-silyl-P-bromophosphoranimines t-BuR(2)SiN=P(R')(Me)Br (18, R = R' = Me; 19, R = Me, R' = Ph; 20, R = Ph, R' = Me) and Et(3)SiN=P(R)(Me)Br (23, R = Me; 24, R = Ph). Subsequent treatment of these reactive PBr compounds with lithium trifluoroethoxide or phenoxide produced the corresponding PO derivatives t-BuR(2)SiN=P(R')(Me)OR' ' (25 and 26, R' ' = CH(2)CF(3); 28-30, R' ' = Ph) and Et(3)SiN=P(R)(Me)OR' (31 and 33, R' = CH(2)CF(3); 32 and 34, R = Ph), respectively. Many of the new compounds containing the bulky tert-butyldiphenylsilyl group, t-BuPh(2)Si, were solids that gave crystals suitable for X-ray diffraction studies. Consequently, the crystal structures of three (silylamino)phosphines (6, 7, and 14), one (silylamino)phosphine oxide (10), one N-silylphosphoranimine (30), and the cyclic compound 36 were determined. Among the (silylamino)phosphines, the P-N bond distances [6, N-PMe(2), 1.725(3) A; 7, N-P(Ph)Cl, 1.68(1) A, 14, N-PF(2), 1.652(4) A] decreased significantly as the electron-withdrawing nature of the phosphorus substituents increased. The N-silylphosphoranimine t-BuPh(2)SiN=PMe(2)OPh (30), which is a model system for poly(phosphazene) precursors, had a much shorter P=N distance of 1.512(6) A and a wide Si-N-P bond angle of 166.4(3) degrees. A similar P=N bond distance [1.514(7) A] and Si-N-P angle [169.9(6) degrees ] were observed for the exocyclic P=N-Si linkage in the ring compound 36, while the phosphine oxide 10 had P-N and P=O distances of 1.637(4) and 1.496(3) A, respectively, and a Si-N-P angle of 134.3(2) degrees.  相似文献   

8.
The bisketene (Me(3)SiC=C=O)(2) (3) reacts rapidly with 1 equiv of secondary amines to form aminodihydrofuranones 11 as the only observable products. This is in contrast to previous studies (J. Org. Chem. 1999, 64, 4690) of the reactions of 3 with primary amines in which 3 with 1 equiv of amine gives ketenyl amides 4, which slowly cyclize to succinimides 7. The kinetics of the reaction of 3 with morpholine obeyed a rate law with the term [morpholine](2), consistent with rate-limiting formation of the enol amide 14 with catalysis by a second amine molecule. The subsequent formation of 11 is attributed to hindrance of ketonization of intermediate enol amides 14. The furanones 11 react with Me(3)SiOTf to form silyloxyfurans 16, and these react with diethyl diazodicarboxylate, forming maleamide derivatives 17.  相似文献   

9.
13C NMR chemical shifts delta(C)(C=N) were measured in CDCl3 for a wide set of mesogenic molecule model compounds, viz. the substituted benzylidene anilines p-X-C6H4CH=NC6H4-p-Y (X = NO2, CN, CF3, F, Cl, H, Me, MeO, or NMe2; Y = NO2, CN, F, Cl, H, Me, MeO, or NMe2). The substituent dependence of delta(C)(C=N) was used as a tool to study electronic substituent effects on the azomethine unit. The benzylidene substituents X have a reverse effect on delta(C)(C=N): electron-withdrawing substituents cause shielding, while electron-donating ones behave oppositely, the inductive effects clearly predominating over the resonance effects. In contrast, the aniline substituents Y exert normal effects: electron-withdrawing substituents cause deshielding, while electron-donating ones cause shielding of the C=N carbon, the strengths of the inductive and resonance effects being closely similar. Additionally, the presence of a specific cross-interaction between X and Y could be verified. The electronic effects of the neighboring aromatic ring substituents systematically modify the sensitivity of the C=N group to the electronic effects of the benzylidene or aniline ring substituents. Electron-withdrawing substituents on the aniline ring decrease the sensitivity of delta(C)(C=N) to the substitution on the benzylidine ring, while electron-donating substituents have the opposite effect. In contrast, electron-withdrawing substituents on the benzylidene ring increase the sensitivity of delta(C)(C=N) to the substituent on the aniline ring, while electron-donating substituents act in the opposite way. These results can be rationalized in terms of the substituent-sensitive balance of the electron delocalization (mesomeric effects). The present NMR characteristics are discussed as regards the computational literature data. Valuable information has been obtained on the effects of the substituents on the molecular core of the mesogenic model compounds.  相似文献   

10.
Three fluorinated benzoxazines ( 14–16 ), which cannot be synthesized by the traditional one‐step approaches, were synthesized by a three‐step procedure using fluorinated aromatic diamines ( 2–4 ) as starting materials. The structures of the monomers were confirmed by 1H NMR, IR, and high‐resolution mass spectra. The low dielectric thermosets, P( 14–16 ), were prepared by ring‐opening of ( 14–16 ). IR analysis was utilized to monitor the ring‐opening reaction of ( 14–16 ) and to propose the structures of P( 14–16 ). The thermal and dielectric properties of P( 14–16 ) were studied and compared with a nonfluorinated polybenzoxazine P( 13 ), which is derived form the ring‐opening of 2,2‐bis(4‐aminophenoxy)phenyl)propane ( 1 ). Besides, the structure–property relationship of the P( 13–16 ) is discussed. According to Tg measurement, the ortho‐positioned CF3 substituents impart greater steric hindrance for ring‐opening of benzoxazines than CF3 substituents of hexafluoropropane. Incorporating a biphenol F‐based benzoxazine, ( F‐a ), into fluorinated benzoxazines ( 15–16 ) can dilute the effect of ortho‐positioned CF3 substituents on steric hindrance, leading to a higher crosslinking density and consequently a higher Tg. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4970–4983, 2008  相似文献   

11.
Tin(ii) chloride selectively reduces the aromatic nitro group to the amino group, the azoxy group remaining intact. This allows the preparation of 2-(R-NNO-azoxy)anilines from 2-(R-NNO-azoxy)nitrobenzenes bearing electron-donating or weak electron-withdrawing substituents (Me or Br) in the benzene ring and alkyl substituents at the distal N atom of the azoxy group. The presence of electron-withdrawing substituents at the azoxy group (for example, CO2Et) leads to a change in the direction of the reaction resulting in selective reduction of the azoxy group to the hydrazo group.  相似文献   

12.
The displacements of the methyl substituents away from the metal and out of the cyclopentadienyl ring plane are compared in sterically crowded (C(5)Me(5))(3)M complexes vs sterically normal f-element complexes in an attempt to evaluate the utility of this parameter in predicting unusual (C(5)Me(5))(1-) ring reactivity. The out-of-plane displacements of 16 sterically crowded tris(cyclopentadienyl) complexes of general formula (C(5)Me(5))(3)M, (C(5)Me(4)R)(3)M (R = Et, (i)Pr, (t)()Bu, SiMe(3)), (C(5)Me(5))(3)MX (X = anion), and (C(5)Me(5))(3)ML (L = neutral ligand) are compared with [(C(5)Me(5))(2)U](2)(C(6)H(6)), (C(5)Me(5))(2)Sm(PC(4)H(2)(t)Bu(2)), and 33 representative examples of f-element bis(cyclopentadienyl) complexes with normal cyclopentadienyl behavior and coordination numbers ranging from 6 to 10. In general, the methyl displacement values of sterically crowded complexes overlap with those in the other complexes, which demonstrates that the basis of the structural distortions is complex. However, if the most extreme out-of-plane displacement in each of the sterically crowded complexes is examined vs the analogous maximum out-of-plane displacement in less crowded systems, there appears to be a basis for predicting cyclopentadienyl reactivity.  相似文献   

13.
A new series of nitro‐substituted bis(imino)pyridine ligands {2,6‐bis[1‐(2‐methyl‐4‐nitrophenylimino)ethyl]pyridine, 2,6‐bis[1‐(4‐nitrophenylimino)ethyl]pyridine, (1‐{6‐[1‐(4‐nitro‐phenylimino)‐ethyl]‐pyridin‐2‐yl}‐ethylidene)‐(2,4,6‐trimethyl‐phenyl)‐amine, and 2,6‐bis[1‐(2‐methyl‐3‐nitrophenylimino)ethyl]pyridine} and their corresponding Fe(II) complexes [{p‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐ Me? p‐NO2}FeCl2 ( 10 ), L2FeCl2 ( 11 ), {m‐NO2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? m‐NO2}FeCl2 ( 12 ), and {p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Mes}FeCl2 ( 14 )] were synthesized. According to X‐ray analysis, there were shortenings of the axial Fe? N bond lengths (up to 0.014 Å) in para‐nitro‐substituted complex 10 and (up to 0.015 Å) in meta‐nitro‐substituted complex 12 versus the Fe(II) complex without nitro groups [{o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me}FeCl2 ( 1 )]. Complexes 10 , 12 , and 14 afforded very active catalysts for the production of α‐olefins and were more temperature‐stable and had longer lifetimes than parent non‐nitro‐substituted Fe(II) complex 1 . The reaction between FeCl2 and a sterically less hindered ligand [p‐NO2? Ph? N?C(Me)? Py? C(Me)?N? Ph? p‐NO2] resulted in the formation of octahedral complex 11 . A para‐dialkylamino‐substituted bis(imino)pyridine ligand [p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2] and the corresponding Fe(II) complex [{p‐NEt2? o‐Me? Ph? N?C(Me)? Py? C(Me)?N? Ph? o‐Me? p‐NEt2}FeCl2 ( 16 )] were synthesized to evaluate the effect of enhanced electron donation of the ligand on the catalytic performance. According to X‐ray analysis, there was a shortening (up to 0.043 Å) of the axial Fe? N bond lengths in para‐diethylamino‐substituted complex 16 in comparison with parent Fe(II) complex 1 . © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2615–2635, 2006  相似文献   

14.
A new potentially hexadentate tetraazamacrocycle based on the cyclen skeleton has been synthesized and fully characterized. The macrocycle 4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-bis(methanephosphonic acid monoethyl ester) dipotassium salt (Me2DO2PME) contains mutually trans monoethyl ester phosphonate acid substituents on two nitrogen atoms, and trans methyl substituents on the other two nitrogen atoms. The protonation constants of this macrocycle and the stability constants of its complexes with Cu2+, Zn2+, Gd3+ and Ca2+ ions have been determined by pH potentiometric titrations. The protonation sequence of the macrocycle has been studied by 1H, 31P[1H] and 13C[1H] NMR spectroscopy: the first and second protonation steps take place at the methyl-substituted nitrogen atoms, while the third protonation involves one oxygen from a phosphonate group. Upon protonation, all the CH2 ring protons become magnetically inequivalent on the NMR time scale due to a slow conformational rearrangement, most likely occasioned by the formation of multiple hydrogen bonds within the macrocyclic ring. Me2DOPM forms neutral, mononuclear complexes with all the metals investigated. The presence of hydroxo complexes was observed for Ca2+ and Zn2+ at high pH values. Structural information on the neutral complex [Cu(Me2DO2PME)] has been obtained by a solution X-Band EPR study. It is proposed that Me2DO2PME binds Cu2+ in a distorted octahedral structure using all of its donor atoms, i.e. the four nitrogen atoms and the two phosphonate oxygen atoms. The redox chemistry of [Cu(Me2DO2PME)] in dimethyl sulfoxide and water has been studied by electrochemical measurements. Cyclic voltammetry in DMSO shows the complex to undergo a quasireversible one-electron reduction step leading to an unstable CuI species.  相似文献   

15.
A dynamic 1H NMR study has been carried out on the fluxional motion of the symmetric chelating ligand 2,9-dimethyl-1,10-phenanthroline (Me2-phen) between nonequivalent exchanging sites in a variety of square-planar complexes of the type [Pt(Me)(Me2-phen)(PR3)]BArf, 1-14, (BArf = B[3,5-(CF3)2C6H3]4). In these compounds, the P-donor ligands PR3 encompass a wide range of steric and electronic characteristics [PR3 = P(4-XC6H4)3, X = H 1, F, 2, Cl 3, CF3 4, MeO 5, Me 6; PR3 = PMe(C6H5)2 7, PMe2(C6H5) 8, PMe3 9, PEt3 10, P(i-Pr)3 11, PCy(C6H5)2 12, PCy2(C6H5) 13, PCy3 14]. All complexes have been synthesized and fully characterized through elemental analysis, 1H and 31P{1H} NMR. X-ray crystal structures are reported for the compounds 8, 11, 14, and for [Pt(Me)(phen)(P(C6H5)3)]PF6 (15), all but the last showing loss of planarity and a significant rotation of the Me2-phen moiety around the N1-N2 vector. Steric congestion brought about by the P-donor ligands is responsible for tetrahedral distortion of the coordination plane and significant lengthening of the Pt-N2 (cis to phosphane) bond distances. Application of standard quantitative analysis of ligand effects (QALE) methodology enabled a quantitative separation of steric and electronic contributions of P-donor ligands to the values of the platinum-phosphorus 1J(PtP) coupling constants and of the free activation energies DeltaG++ of the fluxional motion of Me2-phen in 1-14. The steric profiles for both 1J(PtP) and DeltaG++ show the onset of steric thresholds (at cone angle values of 150 degrees and 148 degrees , respectively), that are associated with an overload of steric congestion already evidenced by the crystal structures of 11 and 14. The sharp increase of the fluxional rate of Me2-phen can be assumed as a perceptive kinetic tool for revealing ground-state destabilization produced by the P-donor ligands. The mechanism involves initial breaking of a metal-nitrogen bond, fast interconversion between two 14-electron three-coordinate T-shaped intermediates containing eta1-coordinated Me2-phen, and final ring closure. By use of the results from QALE regression analysis, a free-energy surface has been constructed that represents the way in which any single P-donor ligand can affect the energy of the transition state in the absence of aryl or pi-acidity effects.  相似文献   

16.
Catalytic dehydrogenation of R(2)NHBH(3) (R = Me, H) promoted by a family of bis(cyclopentadienyl)titanium and bis(indenyl)zirconium compounds is reported; structure-reactivity relationships as a function of cyclopentadienyl and indenyl substituents have been examined.  相似文献   

17.
1,3‐Dipolar cycloadditions of diphenyldiazomethane to thioketones afford 2,5‐dihydro‐1,3,4‐thiadiazoles 8 , which rapidly lose N2. The liberated thiocarbonyl ylides 10 furnish thiiranes 9 by electrocyclic ring closure. The rate constants, measured by spectrophotometry (DMF, 40°C) for 16 cycloaliphatic and aromatic thioketones and one cyclic trithiocarbonate, stretch over five powers of 10 with fluorene‐9‐thione at the top and 2,2,5,5‐tetramethylcyclopentanethione at the bottom. Electron‐releasing substituents decrease the cycloaddition rate of thiobenzophenone; thus, the ambiphilic diphenyldiazomethane reacts as nucleophilic partner with the electrophilic thioketone. The influence of substituents and ring size on the reactivity of cycloalkanethiones, which are sterically hindered by two gem‐dimethyl groups, will be discussed. Compared with electron‐deficient CC and CC bonds, thiones are superdipolarophiles. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:433–442, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20262  相似文献   

18.
The bis(imino)pyridine iron dinitrogen compounds, ((iPr)PDI)Fe(N(2))(2) and [((Me)PDI)Fe(N(2))](2)(μ(2)-N(2)) ((R)PDI = 2,6-(2,6-R(2)-C(6)H(3)N═CMe)(2)C(5)H(3)N; R = (i)Pr, Me), promote the catalytic intermolecular [2π + 2π] cycloaddition of ethylene and butadiene to form vinylcyclobutane. Stoichiometric experiments resulted in isolation of a catalytically competent iron metallocycle intermediate, which was shown to undergo diene-induced C-C reductive elimination. Deuterium labeling experiments establish competitive cyclometalation of the bis(imino)pyridine aryl substituents during catalytic turnover.  相似文献   

19.
The reaction of linear (Si(n)Cl(2)(n)(+2); n = 3-5) and cyclic (Si(5)Cl(10)) perchloropolysilanes with 1 or 2 equiv of LiN(SiMe(3))(2) results in the formation of the bis(trimethylsilyl)amino derivatives (Me(3)Si)(2)NSi(3)Cl(7) (1), (Me(3)Si)(2)NSi(4)Cl(9) (2), (Me(3)Si)(2)N(SiCl(2))(n)N(SiMe(3))(2) (n = 3, 4; n = 4, 5; n = 5, 6), cyclo-(Me(3)Si)(2)NSi(5)Cl(9) (7), and cyclo-[(Me(3)Si)(2)N](2)Si(5)Cl(8) (8). 1-8 easily can be hydrogenated with LiAlH(4) to give the corresponding amino and diamino polysilanyl hydrides. The monosubstituted and cyclic compounds 1, 2, 7, and 8 additionally afford Si-Si bond scission products, which cannot be separated in all cases. Chloro- and dichloro derivatives of Si(3)H(8), n-Si(4)H(10), and n-Si(5)H(12) are obtained from the corresponding aminosilanes and dry HCl. All compounds were characterized by standard spectroscopic techniques. For Si-H derivatives the coupled (29)Si NMR spectra were analyzed to obtain an unequivocal structural proof.  相似文献   

20.
New ruthenium(II) complexes having a tetradentate ligand such as tris(2-pyridylmethyl)amine (TPA), tris[2-(5-methoxycarbonyl)pyridylmethyl]amine [5-(MeOCO)3-TPA], tris(2-quinolylmethyl)amine (TQA), or bis(2-pyridylmethyl)glycinate (BPG) have been prepared. The reaction of the ligand with [RuCl2(Me2SO)4] resulted in a mixture of trans and cis isomers of the chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes containing a TPA or a BPG, whereas a trans(Cl,N(amino)) isomer was selectively obtained for 5-(MeOCO)3-TPA and TQA. The trans and cis isomers of the [RuCl(TPA)(Me2SO)]+ complex were easily separated by fractional recrystallization. The molecular structures of trans- and cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complexes and the trans(Cl,N(amino))-[RuCl{5-(MeOCO)3-TPA}(Me2SO)]+ complex have been determined by X-ray structural analyses. The reaction of TPA with [RuCl2(PhCN)4] gave a single isomer of the chloro(benzonitrile)ruthenium(II) complex, whereas the bis(benzonitrile)ruthenium(II) complex was obtained with BPG. The cis(Cl,N(amino))-[RuCl(TPA)(Me2SO)]+ complex is thermodynamically much less stable than the trans isomer and isomerizes in dimethyl sulfoxide at 65-100 degrees C. Oxygenation of alkanes catalyzed by these ruthenium(II) complexes has been examined. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complexes with TPA and its derivatives using m-chloroperbenzoic acid as a cooxidant showed high catalytic ability. Adamantane was efficiently and selectively oxidized to give 1-adamantanol up to 88%. The chloro(dimethyl sulfoxide-kappaS)ruthenium(II) complex with 5-(MeOCO)3-TPA was found to be the most active catalyst among the complexes examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号