首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The uniform nuclear charge distribution remains a satisfactory model for calculating electron radial wave functions and nuclear matrix elements even in the case of the superallowed Fermi transitions of light nuclei up to 54Co, where high accuracy is needed to determine the vector coupling constant of nuclear β-decay. The modifications due to the deviation of the realistic charge distribution from this simple model are found to be smaller than previously thought and therefore are negligible, provided that the nuclear radius, which is the most important shape parameter, has its correct value (i.e. the r.m.s. radii of the realistic and the model distribution are the same). Moreover, the dependence on the nuclear radius is fairly small for the light nuclei under consideration.  相似文献   

2.
Potential barriers and nuclear shapes are calculated for the first time in the fragmentation theory for the various target-projectile combinations. It is shown that the choice of the reaction partners of a cool compound nucleus reaction can be optimized on the basis of this information. Combinations with largest mass- and charge asymmetries, largest interaction radii and smallest interaction barriers are shown to be most favourable. The interaction radius, which is defined to be the radius of the compound nucleus at the top of the barrier, is shown to be related with both mass- and charge asymmetries of the reaction. The calculations are illustrated for the compound nuclei 258104 and 260106.  相似文献   

3.
The nuclear electric quadrupole moment(NQM) is one of the fundamental bulk properties of the nucleus with which nuclear deformations can be investigated. The number of measured NQMs is significantly less than that of known masses, and there is still no global NQM formula for all bound nuclei. In this paper, we propose an analytical formula, which includes the shell corrections and which is the function of the charge number, mass number, spin,charge radius, and nuclear deformation, for calculating the NQMs of all bound nuclei. Our calculated NQMs of 524 nuclei in their ground states are reasonable compared to the experimental data based on the nuclear deformation parameters derived from the Weizs¨acker-Skyrme(WS) nuclear mass models. Smaller rms deviations between the calculated NQMs and experimental data indicate that the deformation parameters predicted from the WS mass models are reasonable. In addition, 161 unmeasured NQMs with known spins are also predicted with the proposed formula.  相似文献   

4.
A new formula for the nuclear charge radius is proposed, dependent on the mass numberA and neutron excessN-Z in the nucleus. It is simple and it reproduces all the experimentally available mean square radii and their isotopic shifts of even-even nuclei much better than other frequently used relations.This work is partly supported by the Polish Committee of Scientific Research under contract No. 203119101  相似文献   

5.
The conclusions of part I [Z. Physik211, 195 (1968)] are revised: the nuclear energy changes within an isomultiplet, so that the change in the charge radius cannot be derived from the energy difference. The three-parameter formula for the charge density does not remove the discrepancy found in heavy nuclei with the two-parameter formula.  相似文献   

6.
Relativistic Hartree equations for spherical nuclei are derived from a relativistic nuclear quantum field theory using a coordinate-space Green function approach. The renormalizable field theory lagrangian includes the interaction of nucleons with σ, ω, ρ and π mesons and the photon. The Hartree equations represent the “mean-field” approximation for a finite nuclear system. Coupling constants and the σ-meson mass are determined from the properties of nuclear matter and the rms charge radius in 40Ca, and pionic contributions are absent for static, closed-shell nuclei. Calculated charge densities, neutron densities, rms radii, and single-nucleon energy levels throughout the periodic table are compared with data and with results of non-relativistic calculations. Relativistic Hartree results agree with experiment at a level comparable to that of the most sophisticated non-relativistic calculations to date. It is shown that the Lorentz covariance of the relativistic formalism leads naturally to density-dependent interactions between nucleons. Furthermore, non-relativistic reduction reveals non-central and non-local aspects inherent in the Hartree formalism. The success of this simple relativistic Hartree approach is attributed to these features of the interaction.  相似文献   

7.

The Bose-Einstein correlation function for two pions of same charge produced in a high energy nucleus-nucleus collision is computed in the framework of the reggeon theory. We obtain a coherence parameter λ=1 and a transverse radius of the sourceR T close to the radius of the smaller of the colliding nuclei.

  相似文献   

8.
9.
Relativistic nonlinear models based on the Hartree and Hartree-Fock approximations, including the σ, ω, π, and ρ mesons, are worked out to explore the behavior of the nuclear charge radii and the binding energies of several isotopic chains. We find a correlation between the magnitude of the anomalous kink effect (KE) in the Pb isotopic family and the compressibility modulus (K) of nuclear matter. The KE appears to be sensitive, in particular, to the mechanisms which control the K value. The influence of the symmetry energy on the Ca isotopic chain is also studied. The behavior of the charge radii of single-particle states for some special cases and its repercussion on the nuclear charge radius is analyzed. The effect of pairing correlations on the models improves considerably the quality of the results in both binding energy and KE.  相似文献   

10.
In view of the recently observed discrepancy of theory and experiment for muonic hydrogen [R. Pohl et al., Nature 466 (2010) 213], we reexamine the theory on which the quantum electrodynamic (QED) predictions are based. In particular, we update the theory of the 2P–2S Lamb shift, by calculating the self-energy of the bound muon in the full Coulomb + vacuum polarization (Uehling) potential. We also investigate the relativistic two-body corrections to the vacuum polarization shift, and we analyze the influence of the shape of the nuclear charge distribution on the proton radius determination. The uncertainty associated with the third Zemach moment 〈r32 in the determination of the proton radius from the measurement is estimated. An updated theoretical prediction for the 2S–2P transition is given.  相似文献   

11.
《Nuclear Physics A》1996,609(3):339-363
Relativistic Hartree equations for spherical nuclei have been derived from a relativistic quark model of the structure of bound nucleons which interact through the (self-consistent) exchange of scalar (σ) and vector (ω and ϱ) mesons. The coupling constants and the mass of the σ-meson are determined from the properties of symmetric nuclear matter and the rms charge radius in 40Ca. Calculated properties of static, closed-shell nuclei from 16O to 208Pb are compared with experimental data and with results of Quantum Hadrodynamics (QHD). The dependence of the results on the nucleon size and the quark mass is investigated. Several possible extensions of the model are also discussed.  相似文献   

12.
We have determined the nuclear charge radius of 11Li by high-precision laser spectroscopy. The experiment was performed at the TRIUMF-ISAC facility where the 7Li-11Li isotope shift (IS) was measured in the 2s→3s electronic transition using Doppler-free two-photon spectroscopy with a relative accuracy better than 10−5. The accuracy for the IS of the other lithium isotopes was also improved. IS’s are mainly caused by differences in nuclear mass, but changes in proton distribution also give small contributions. Comparing experimentally measured IS with advanced atomic calculation of purely mass-based shifts, including QED and relativistic effects, allows derivation of the nuclear charge radii. The radii are found to decrease monotonically from 6Li to 9Li, and then increase with 11Li about 11% larger than 9Li. These results are a benchmark for the open question as to whether nuclear core excitation by halo neutrons is necessary to explain the large nuclear matter radius of 11Li; thus, the results are compared with a number of nuclear structure models.  相似文献   

13.
曾谨言 《物理学报》1957,13(5):357-364
从分析各方面实验结果(高能电子被核散射,μ—介原子的X谱)表明原子核电荷分布半径R_p很接近于和z1/3成正比(Rp=ropz1/3。按照这看法修改了原子核结合能半经验公式(Bethe-Weizs?cker公式),把原来公式中库仑能项3/5 (z2e2)/rpA1/3)=a3z2/A1/3换成3/5 (z2e2)/ropz1/3) =a′3z5/3,结果改进了公式与实验符合的程度,并且按照新公式可以很正确地计算各元素中对β衰变最稳定的同位素的质量数。  相似文献   

14.
Isotope shift measurements by means of laser resonance ionization spectroscopy are a unique tool to determine the charge radii of halo nuclei. The most prominent halo nucleus 11Li is at the same time the best accessible candidate for such studies. The experimental method to determine the charge radius of this exotic nucleus and first test results on 7Li will be presented in this paper. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
In this work, we have obtained energy levels and charge radius for the β-stability line nucleus, in relativistic shell model. In this model, we considered a close shell for each nucleus containing double magic number and a single nucleon energy level. Here we have taken 41Ca with a single neutron in the 40Ca core as an illustrative example. Then we have selected the Eckart plus Hulthen potentials for interaction between the core and the single nucleon. By using parametric Nikiforov–Uvarov (PNU) method, we have calculated the energy values and wave function. Finally, we have calculated the charge radius for 17O, 41Ca, 49Ca and 57Ni. Our results are in agreement with experimental values and hence this model can be applied for similar nuclei.  相似文献   

16.
Based on the systematic investigation of the data available for nuclei with A≥ 40, a Z 1/3-dependence for the nuclear charge radii is shown to be superior to the generally accepted A 1/3 law. A delicate scattering of data around R c/Z 1/3 is inferred as owing to the isospin effect and a linear dependence of R c/Z 1/3 on N/Z (or (N - Z)/2) is found. This inference is well supported by the microscopic Relativistic Continuum Hartree-Bogoliubov (RCHB) calculation conducted for the proton magic Ca, Ni, Zr, Sn and Pb isotopes including the exotic nuclei close to the neutron drip line. With the linear isospin dependence provided by the data and RCHB theory, a new isospin-dependent Z 1/3 formula for the nuclear charge radii is proposed. Received: 23 September 2001 / Accepted: 21 January 2002  相似文献   

17.
The laws of fluorine nuclear spin polarization in the Si/CaF2 nanostructure under optical excitation of the charge carriers in it has been considered theoretically. It has been shown that maximum values (up to 3% of the concentration of nuclei in the lattice) are attained under a high rate of optical excitation (>10−9 sec−1) when the nuclear spin diffusion process and the Auger recombination prevail. In this case, the nuclear relaxation time in an individual layer reaches 100–300 sec and the spin diffusion radius decreases to 0.3 nm. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 3, pp. 397–403, May–June, 2005.  相似文献   

18.
Density-dependent zero-range forces of the form of the modified delta interaction (MDI) are generalized (MDI3, MDI4) in order to yield reasonable values of the compression modulus in nuclear matter (KN = 200 MeV). This low value can be fitted by introducing two terms with different density dependence in the force. The four free parameters of MDI3 are adjusted to reproduce the nuclear matter values of the binding energy, density and compression modulus, and to fulfil the condition that the total energy of 16O in harmonic oscillator wave functions has a minimum at the oscillator length b = 1.75 fm, corresponding to the correct rms radius. MDI4 contains in addition a two-body spin-orbit interaction. The five parameters of MDI4 are fitted to the above three nuclear matter data and by requiring that Hartree-Fock (HF) calculations in 208Pb yield the experimental charge rms radius and reasonable values of certain single-particle spin-orbit splittings. The quality of MDI4 is checked by comparing calculated rms radii, binding energies, and elastic electron scattering cross sections with available experimental data for doubly closed shell nuclei. As a test the energy levels and the nuclear monopole polarization of muonic 208Pb are calculated self-consistently yielding impressive agreement with experiment.  相似文献   

19.
20.
The change of therms radius of the nuclear charge distribution on addition of one proton is derived for 25 nuclides between 19 39 K and 82 208 Pb. For this purpose, results of the muonic 2p-1s transition energies are used together with the optical isotope shifts. The uncertainties of the procedure are discussed. Corresponding results from elastic electron scattering are included for three pairs of nuclides. — For heavy nuclei, the average increase in radius per proton exceeds considerably that per neutron, as expected. Although the individual values are associated with rather large errors, shell effects seem to be noticeable atZ=28 andZ=50.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号