首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compounds Cp2Ln[N(QPPh2)2] (Ln = La (1), Gd (2), Er (3), or Yb (4) for Q = Se, Ln = Yb (5) for Q = S) have been synthesized from the corresponding rare-earth tris(cyclopentadienyl) compound and H[N(QPPh2)2]. The structures of compounds 1, 2, 3, and 5, as determined by X-ray crystallography, consist of a Cp2Ln fragment, coordinated eta 3 through two chalcogen atoms and an N atom of the imidodiphosphinochalcogenido ligand [N(QPPh2)2]-. In compound 4, the Cp2Yb moiety is coordinated eta 2 through the two Se atoms of the [N(SePPh2)2]-ligand. 31P and 77Se (for 1) NMR spectroscopies lend insight into the solution nature of these species. Crystal data: 1, C34H30LaNP2Se2, triclinic, P1, a = 9.7959(10) A, b = 12.4134(13) A, c = 13.9077(14) A, alpha = 88.106(2) degrees, beta = 88.327(2) degrees, gamma = 68.481(2) degrees, V = 1572.2(3) A3, T = 153 K, Z = 2, and R1(F) = 0.0257 for the 5947 reflections with I > .2 sigma(I); 2, C34H30GdNP2Se2, triclinic, P1, a = 9.7130(14) A, b = 12.2659(17) A, c = 13.953(2) A, alpha = 88.062(2) degrees, beta = 87.613(2) degrees, gamma = 69.041(2) degrees, V = 1550.7(4) A3, T = 153 K, Z = 2, and R1(F) = 0.0323 for the 5064 reflections with I > 2 sigma(I); 3, C34H30ErNP2Se2, triclinic, P1, a = 9.704(2) A, b = 12.222(3) A, c = 13.980(4) A, alpha = 88.230(4) degrees, beta = 87.487(4) degees, gamma = 69.107(4) degrees, V = 1547.4(7) A3, T = 153 K, Z = 2, and R1(F) = 0.0278 for the 6377 reflections with I > 2 sigma(I); 4, C34H30NP2Se2Yb.C4H8O, triclinic, P1, a = 12.087(4) A, b = 12.429(4) A, c = 23.990(7) A, alpha = 89.406(5) degrees, beta = 86.368(5) degrees, gamma = 81.664(5) degrees, V = 3558.8(18) A3, T = 153 K, Z = 4, and R1(F) = 0.0321 for the 11,883 reflections with I > 2 sigma(I); and 5, C34H30NP2S2Yb, monoclinic, P21/n, a = 13.8799(18) A, b = 12.6747(16) A, c = 17.180(2) A, beta = 91.102(3) degrees, V = 3021.8(7) A3, T = 153 K, Z = 4, and R1(F) = 0.0218 for the 6698 reflections with I > 2 sigma(I).  相似文献   

2.
Four europium group XIV chalcogenides have been synthesized using the reactive flux method: K(2)EuTSe(5) (I, II) and KEuTS(4) (III, IV) where T = Si, Ge. K(2)EuSiSe(5), I, crystallizes in the monoclinic space group P2(1)/c with cell parameters a = 11.669(3) A, b = 9.844(2) A, c = 8.917(2) A, beta = 91.583(5) degrees, and Z = 4. K(2)EuGeSe(5), II, crystallizes in the monoclinic space group P2(1)/c with cell parameters a = 11.8056(3) A, b = 9.9630(1) A, c = 8.9456(1) A, beta = 91.195(1) degrees, and Z = 4. Both K(2)EuSiSe(5) and K(2)EuGeSe(5) are semiconductors with optical band-gaps of approximately 2.00 and 1.84 eV, respectively. Raman spectroscopy shows vibrations from the (TSe(5))(4-) (T = Si, Ge) unit. KEuSiS(4), III, crystallizes in the monoclinic space group P2(1) with cell parameters a = 6.426(4) A, b = 6.582(5) A, c = 8.566(7) A, beta = 107.83(6) degrees, and Z = 2. KEuGeS(4), IV, crystallizes in the monoclinic space group P2(1) with cell parameters a = 6.510(2) A, b = 6.649(2) A, c = 8.603(3) A, beta = 107.80(2) degrees, and Z = 2. Band-gap analysis shows that both compounds are semiconductors with optical band-gaps of 1.72 and 1.71 eV, respectively. The Raman spectrum of KEuGeS(4) shows the vibrations of the (GeS(4))(4-) unit. Fluorescence spectroscopy confirms the presence of Eu(III) in III and IV instead of Eu(II) as in I and II. These four crystalline products were formed under equivalent stoichiometric reaction conditions. The fact that two different products are observed can be used to understand the relationship between the oxidative and reductive potentials within these flux reactions.  相似文献   

3.
Gascoin F  Sevov SC 《Inorganic chemistry》2001,40(20):5177-5181
The isostructural title compounds were prepared by direct reactions of the corresponding elements, and their structures were determined from single-crystal X-ray diffraction data in the monoclinic space group C2/m, Z = 2 (K5As4, a = 11.592(2) A, b = 5.2114(5) A, c = 10.383(3) A, beta = 113.42(1) degrees; K5Sb4, a = 12.319(1) A, b = 5.4866(4) A, c = 11.258(1) A, beta = 112.27(7) degrees; Rb5Sb4, a = 12.7803(9) A, b = 5.7518(4) A, c = 11.6310(8) A, beta = 113.701(1) degrees; K5Bi4, a = 12.517(2) A, b = 5.541(1) A, c = 11.625(2) A, beta = 111.46(1) degrees; Rb5Bi4, a = 12.945(4) A, b = 5.7851(9) A, c = 12.018(5) A, beta = 112.78(3) degrees; Cs5Bi4, a = 12.887(3) A, b = 6.323(1) A, c = 12.636(1) A, beta = 122.94(2) degrees). The compounds contain isolated and flat zigzag tetramers of Pn4(4-) (Pnictide (Pn) = As, Sb, Bi) with a conjugated pi-electron system of delocalized electrons. All six compounds are metallic ("metallic salts") and show temperature-independent (Pauli-like) paramagnetism due to a delocalized electron from the extra alkali-metal cation in the formula. At low temperatures (around 9.5 K) and low magnetic fields the bismuthides become superconducting.  相似文献   

4.
Two new phosphates, Bi(4.25)(PO4)2O(3.375) and Bi(5)(PO(4))(2)O(4.5), have been analyzed by single-crystal X-ray diffraction in the series Bi(4+x)(PO4)2O(3+3x/2) (0.175 < or = x < or = 1). The syntheses of the compositions ranging from x = 0.175 to 0.475 were carried out by the ceramic route. The compositions from x = 0.175 to 0.475 form a solid solution with a structure similar to that of Bi(4.25)(PO4)2O(3.375), while Bi(5)(PO4)2O(4.5) was isolated from a mixture of two phases. Both of the phases form fluorite-related structures but, nevertheless, differ from each other with respect to the arrangement of the bismuth atoms. The uniqueness in the structures is the appearance of isolated PO(4) tetrahedra separated by interleaving [Bi2O2] units. ac impedance studies indicate conductivity on the order of 10(-5) S cm(-1) for Bi(4.25)(PO4)2O(3.375). Crystal data: Bi(4.25)(PO4)2O(3.375), triclinic, space group P (No. 1), with a = 7.047(1) A, b = 9.863(2) A, c = 15.365(4) A, alpha = 77.604(4) degrees, beta = 84.556(4) degrees, gamma = 70.152(4) degrees, V = 980.90(4) A3, and Z = 4; Bi(5)(PO4)2O(4.5), monoclinic, space group C2/c (No. 15), with a = 13.093(1) A, b = 5.707(1) A, c = 15.293(1) A, beta = 98.240(2) degrees, V = 1130.95(4) A(3), and Z = 8.  相似文献   

5.
The new selenogermanates Sr2Ge2Se5 and Ba2Ge2Se5 were synthesized by heating stoichiometric mixtures of binary selenides and the corresponding elements to 750 degrees C. The crystal structures were determined by single-crystal X-ray methods. Both compounds adopt previously unknown structure types. Sr2Ge2Se5 (P2(1)/n, a = 8.445(2) A, b = 12.302 A, c = 9.179 A, beta = 93.75(3) degrees, Z = 4) contains [Ge4Se10]8- ions with homonuclear Ge-Ge bonds (dGe-Ge = 2.432 A), which may be described as two ethane-like Se3Ge-GeSeSe2/2 fragments sharing two selenium atoms. Ba2Ge2Se5 (Pnma, a = 12.594(3) A, b = 9.174(2) A, c = 9.160(2) A, Z = 4) contains [Ge2Se5]4- anions built up by two edge-sharing GeSe4 tetrahedra, in which one terminal Se atom is replaced by a lone pair from the divalent germanium atom. The alkaline earth cations are arranged between the complex anions, each coordinated by eight or nine selenium atoms. Ba2Ge2Se5 is a mixed-valence compound with GeII and GeIV coexisting within the same anion. Sr2Ge2Se5 contains exclusively GeIII. These compounds possess electronic formulations that correspond to (Sr2+)2(Ge3+)2(Se2-)5 and (Ba2+)2- Ge2+Ge4+(Se2-)5. Calculations of the electron localization function (ELF) reveal clearly both the lone pair on GeII in Ba2Ge2Se5 and the covalent Ge-Ge bond in Sr2Ge2Se5. Analysis of the ELF topologies shows that the GeIII-Se and GeIV-Se covalent bonds are almost identical, whereas the GeII-Se interactions are weaker and more ionic in character.  相似文献   

6.
Two new bismuth sulfides KBiSiS4 and KBiGeS4 have been synthesized by means of the reactive flux method. They adopt the RbBiSiS4 structure type and crystallize in space group P21/c of the monoclinic system. The structure consists of (M=Si, Ge) layers separated by bicapped trigonal-prismatically coordinated K atoms. The M atom is tetrahedrally coordinated to four S atoms and the Bi atom is coordinated to a distorted monocapped trigonal prism of seven S atoms. The optical band gap of 2.25(2) eV for KBiSiS4 was deduced from the diffuse reflectance spectrum. From a band structure calculation, the optical absorption for KBiSiS4 originates from the layer. The Si 3p orbitals, Bi 6p orbitals, and S 3p orbitals are highly hybridized near the Fermi level. The orbitals of K have no contributions on both the upper of valence band and the bottom of conduction band.  相似文献   

7.
A series of lanthanide complexes containing a chalcogenolate ligand supported by two TpMe,Me (tris-3,5-dimethylpyrazolylborate) groups has been prepared and crystallized and provides direct comparisons of bonding to hard and soft ligands at lanthanide centers. Reaction of [Sm(TpMe,Me)2Cl] with NaOR (R = Ph, Ph-Bu(t)) gives [Sm(TpMe,Me)2OR] (1a and 1b, respectively) in good yields. Reductive cleavage of dichalcogenides by samarium(II) was used to prepare the heavier congeners. Complexes of the type [Sm(TpMe,Me)2ER] for E = S, R = Ph (2a), E = S, R = Ph-4-Me (2b), E = S, R = CH2Ph (2c), E = Se, R = Ph (3a), E = Se, R = Ph-4-Bu(t) (3b), E = Se, R = CH2Ph (3c), and E = Te, R = Ph (4) have been prepared together with the corresponding complexes with TpMe,Me,4-Et as ancillary. The X-ray crystal structures of 1b, 2b, 3a, 3b, and 4 have been determined. The crystal of 1b (C40H57B2N12OSm.C7H8) was monoclinic, P2(1)/c, a = 10.6845(6) A, b = 18.5573(11) A, c = 24.4075(14) A, beta = 91.616(2) degrees, Z = 4. The crystal of 2b (C37H51B2N12SSm) was monoclinic, P2(1)/n, a = 15.0154(9) A, b = 13.1853(8) A, c = 21.1254(13) A, beta = 108.628(2) degrees, Z = 4. The crystal of 3a (C36H49B2N12SeSm.C7H8) was triclinic, P1, a = 10.7819(6) A, b = 19.3011(10) A, c = 23.0235(12) A, alpha = 79.443(2) degrees, beta = 77.428(2) degrees, gamma = 89.827(2) degrees, Z = 4. The crystal of 3b (C40H57B2N12SeSm) was triclinic, P1, a = 10.1801(6) A, b = 10.2622(6) A, c = 23.4367(14) A, alpha = 88.313(2) degrees, beta = 86.268(2) degrees, gamma = 62.503(2) degrees, Z = 2. The crystal of 4 (C36H49B2N12TeSm.C7H8) was monoclinic, P2(1)/c, a = 18.7440(10) A, b = 10.3892(6) A, c = 23.8351(13) A, beta = 94.854(2) degrees, Z = 4. The compounds form an isoleptic series of seven-coordinate complexes with terminal chalcogenolate ligands. Examination of 1b and other crystallographically characterized lanthanide alkoxides suggests that there is little correlation between bond angle and bond length. The structures of 3a and 3b, however, contain molecules in which one of the pyrazolylborate ligands undergoes a major distortion arising from twisting around a B-N bond so as to give an effectively eight-coordinate complex with pi-stacking of the phenyl group with one pyrazolyl ring. These distortions shed light on the fluxionality of these systems.  相似文献   

8.
Two new compounds, LiBi4Nb3O14 and LiBi4Ta3O14, have been synthesized by the solid-state method, using Li2CO3, Bi2O3, and M2O5 (M = Nb, Ta) in stoichiometric quantities. These compounds crystallize in the monoclinic C2/c space group with a = 13.035(3) A, b = 7.647(2) A, c = 12.217(3) A, beta = 101.512(4) degrees , V = 1193.4(5) A3 , and Z = 4 and a = 13.016(2) A, b = 7.583(1) A, c = 12.226(2) A, beta = 101.477(3) degrees , V = 1182.6(5) A3, and Z = 4, respectively. These are isostructural and the structure along the b axis consists of layers of [Bi2O2]2+ units separated by layers of LiO4 tetrahedra and NbO6 octahedra hence depicting an unusual variation in the Aurivillius phase isolated for the first time. The presence of lithium has been confirmed by 7Li NMR studies. ac impedance measurements and variable temperature (7)Li NMR studies indicate oxygen ion conductivity in these materials. The UV-visible spectra suggest a band gap of 3.0 eV for LiBi4Nb3O14 and 3.5 eV for LiBi4Ta3O14, respectively, and the associated studies on degradation of dyes and phenols render these materials suitable for photocatalysis.  相似文献   

9.
Two new intermetallic compounds, Yb(2)Ga(4)Ge(6) and Yb(3)Ga(4)Ge(6), were obtained from reactions in molten Ga. A third compound, Eu(3)Ga(4)Ge(6), was produced by direct combination of the elements. The crystal structures of these compounds were studied by single-crystal X-ray diffraction. Yb(2)Ga(4)Ge(6) crystallizes in an orthorhombic cell with a=4.1698(7), b=23.254(4), c=10.7299(18) A in the polar space group Cmc2(1). The structure of RE(3)Ga(4)Ge(6) is monoclinic, space group C2/m, with cell parameters a=23.941(6), b=4.1928(11), c=10.918(3) A, beta=91.426(4) degrees for RE=Yb, and a=24.136(2), b=4.3118(4), c=11.017(1) A, beta=91.683(2) degrees for RE=Eu. The refinement [I>2 sigma(I)] converged to the final residuals R(1)/wR(2)=0.0229/0.0589, 0.0411/0.1114, and 0.0342/0.0786 for Yb(2)Ga(4)Ge(6), Yb(3)Ga(4)Ge(6), and Eu(3)Ga(4)Ge(6), respectively. The structures of these two families of compounds can be described by a Zintl concept of bonding, in which the three-dimensional [Ga(4)Ge(6)](n-) framework serves as a host and electron sink for the electropositive RE atoms. The structural relation of RE(3)Ga(4)Ge(6) to of Yb(2)Ga(4)Ge(6) lies in a monoclinic distortion of the orthorhombic cell of Yb(2)Ga(4)Ge(6) and reduction of the [Ga(4)Ge(6)] network by two electrons per formula unit. The results of theoretical calculations of the electronic structure, electrical transport data, and thermochemical and magnetic measurements are also reported.  相似文献   

10.
The reaction of the bismuth silanolates [Bi(OSiR2R')3] (R = R' = Me, Et, iPr; R = Me, R' = tBu) with water has been studied. Partial hydrolysis gave polynuclear bismuth-oxo clusters whereas amorphous bismuth-oxo(hydroxy) silanolates were obtained when an excess of water was used in the hydrolysis reaction. The metathesis reaction of BiCl3 with NaOSiMe3 provided mixtures of heterobimetallic silanolates. The molecular structures of [Bi18Na4O20(OSiMe3)18] (2), [Bi33NaO38(OSiMe3)24].3 C7H8 (3.3 C7H8), [Bi50Na2O64(OH)2(OSiMe3)22].2 C7H8.2H2O (4.2 C7H8.2 H2O), [Bi4O2(OSiEt3)8] (5), [Bi9O7(OSiMe3)13].0.5 C7H8 (6. 0.5C7H8), [Bi18O18(OSiMe3)18)].2C7H8 (7. 2C7H8) and [Bi20O18(OSiMe3)24].3C7H8 (8.3C7H8) are presented and compared with the solid-state structures of [Bi22O26(OSiMe2tBu)14] (9) and beta-Bi2O3. Compound 2 crystallises in the triclinic space group P1 with the lattice constants a = 17.0337(9), b = 19.5750(14), c = 26.6799(16) A, alpha = 72.691(4), beta = 73.113(4) and gamma = 70.985(4) degrees ; compound 3.3C7H8 crystallises in the monoclinic space group P2(1)/n with the lattice constants a = 20.488(4), b = 22.539(5), c = 26.154(5) A and beta = 100.79(3) degrees ; compound 4.2C7H82 H2O crystallises in the monoclinic space group P2(1)/n with the lattice constants a = 20.0518(12), b = 24.1010(15), c = 27.4976(14) A and beta = 103.973(3) degrees ; compound 5 crystallises in the monoclinic space group P2(1)/c with the lattice constants a = 25.256(5), b = 15.372(3), c = 21.306(4) A and beta = 113.96(3) degrees ; compound 6.0.5C7H8 crystallises in the triclinic space group P1 with the lattice constants a = 15.1916(9), b = 15.2439(13), c = 22.487(5) A, alpha = 79.686(3), beta = 74.540(5) and gamma = 66.020(4) degrees ; compound 7.2C7H8 crystallises in the triclinic space group P1 with the lattice constants a = 14.8295(12), b = 16.1523(13), c = 18.4166(17) A, alpha = 75.960(4), beta = 79.112(4) and gamma = 63.789(4) degrees ; and compound 8.3C7H8 crystallises in the triclinic space group P1 with the lattice constants a = 17.2915(14), b = 18.383(2), c = 18.4014(18) A, alpha = 95.120(5), beta = 115.995(5) and gamma = 106.813(5) degrees . The molecular structures of the bismuth-rich compounds are related to the CaF2-type structure. Formally, the hexanuclear [Bi6O8]2+ fragment might be described as the central building unit, which is composed of bismuth atoms placed at the vertices of an octahedron and oxygen atoms capping the trigonal faces. Depending on the reaction conditions and the identity of R, the thermal decomposition of the hydrolysis products [Bi(n)O(l)(OH)(m-)(OSiR3)(3n-(2l-m))] gives alpha-Bi2O3, beta-Bi2O3, Bi12SiO20 or Bi4Si3O12.  相似文献   

11.
Six rare-earth arsenic tellurides have been synthesized by the reactions of the rare-earth elements (Ln) with As and Te at 1123 K. LaAsTe (a = 7.8354(11) A, b = 4.1721(6) A, c = 10.2985(14) A, T = 153 K), PrAsTe (a = 7.728(2) A, b = 4.1200(11) A, c = 10.137(3) A, T = 153 K), SmAsTe (a = 7.6180(16) A, b = 4.0821(9) A, c = 9.991(2) A, T = 153 K), GdAsTe (a = 7.5611(15) A, b = 4.0510(8) A, c = 9.920(2) A, T = 153 K), DyAsTe (a = 7.4951(13) A, b = 4.0246(7) A, c = 9.8288(17) A, T = 153 K), and ErAsTe (a = 7.4478(1) A, b = 4.0078(1) A, c = 9.7552(2) A, T = 153 K) crystallize with four formula units in the orthorhombic space group D2h16-Pnma. These compounds are isostructural and belong to the beta-ZrSb2 structure type. In each compound, the Ln atoms are coordinated by a tricapped trigonal prism of four As atoms and five Te atoms. The entire three-dimensional structure is built up by the motif of the LnAs4Te5 tricapped trigonal prisms. Infinite nonalternating zigzag As chains are found along the b axis, with As-As distances in these compounds ranging from 2.5915(5) to 2.6350(9) A. Conductivity measurements in the direction of these As chains indicate that PrAsTe is metallic whereas SmAsTe and DyAsTe are weakly metallic. Antiferromagnetic transitions occur in SmAsTe and DyAsTe at 3 and 9 K, respectively. DyAsTe above 9 K follows the Curie-Weiss law.  相似文献   

12.
Natarajan S 《Inorganic chemistry》2002,41(21):5530-5537
Hydro/solvothermal reactions of ZnO, HCl, H(3)PO(4), 1,4-diazacycleheptane (homopiperazine), and H(2)O under a variety of conditions yielded three new organic-inorganic hybrid materials, [C(5)N(2)H(14)][Zn(HPO(4))(2)].xH(2)O (x = approximately 0.46), I, [C(5)N(2)H(14)][Zn(3)(H(2)O)(PO(4))(2)(HPO(4))], II, and [C(5)N(2)H(14)][Zn(2)(HPO(4))(3)].H(2)O, III. While I has a one-dimensional structure, II possesses a two-dimensional layered structure, and III has a three-dimensional structure closely related to the ABW zeolitic architecture. All the compounds consist of vertex linking of ZnO(4), PO(4), and HPO(4) tetrahedral units. The fundamental building unit, single four-membered ring (S4R), is present in all the cases, and the observed differences in their structures result from variations in the connectivity between the S4R units. Thus I has a corner-shared S4R forming an infinite one-dimensional chain, II has two corner-shared chains fused through a 3-coordinated oxygen atom forming a strip and a layer with eight-membered apertures, and III has S4R units connected via oxygen atoms to give rise to channels bound by eight T atoms (T = Zn, P) in all crystallographic directions. Crystal data: I, monoclinic, space group = P2(1)/n (No. 14), a = 8.6053(3) A, b = 13.7129(5) A, c = 10.8184(4) A, beta = 97.946(1) degrees, V = 1264.35(8) A(3), Z = 4; II, monoclinic, space group = P2(1)/c (No. 14), a = 11.1029(1) A, b = 17.5531(4) A, c = 8.2651(2) A, beta = 97.922(2) degrees, V = 1595.42(5) A(3), Z = 4; III, monoclinic, space group = P2(1) (No. 4), a = 8.0310(2) A, b = 10.2475(3) A, c = 10.570(3) A, beta = 109.651(1) degrees, V = 819.24(3) A(3), Z = 2.  相似文献   

13.
An outstanding example of structural diversity and complexity is found in the compounds with the general formula ABi(3)Q(5) (A = alkali metal; Q = chalcogen). gamma-RbBi(3)S(5) (I), alpha-RbBi(3)Se(5) (II), beta-RbBi(3)Se(5) (III), gamma-RbBi(3)Se(5) (IV), CsBi(3)Se(5) (V), RbBi(3)Se(4)Te (VI), and RbBi(3)Se(3)Te(2) (VII) were synthesized from A(2)Q (A = Rb, Cs; Q = S, Se) and Bi(2)Q(3) (Q = S, Se or Te) at temperatures above 650 degrees C using appropriate reaction protocols. gamma-RbBi(3)S(5) and alpha-RbBi(3)Se(5) have three-dimensional tunnel structures while the rest of the compounds have lamellar structures. gamma-RbBi(3)S(5), gamma-RbBi(3)Se(5), and its isostructural analogues RbBi(3)Se(4)Te and RbBi(3)Se(3)Te(2) crystallize in the orthorhombic space group Pnma with a = 11.744(2) A, b = 4.0519(5) A, c = 21.081(3) A, R1 = 2.9%, wR2 = 6.3% for (I), a = 21.956(7) A, b = 4.136(2) A, c = 12.357(4) A, R1 = 6.2%, wR2 = 13.5% for (IV), and a = 22.018(3) A, b = 4.2217(6) A, c = 12.614(2) A, R1 = 6.2%, wR2 = 10.3% for (VI). gamma-RbBi(3)S(5) has a three-dimensional tunnel structure that differs from the Se analogues. alpha-RbBi(3)Se(5) crystallizes in the monoclinic space group C2/m with a = 36.779(4) A, b = 4.1480(5) A, c = 25.363(3) A, beta = 120.403(2) degrees, R1 = 4.9%, wR2 = 9.9%. beta-RbBi(3)Se(5) and isostructural CsBi(3)Se(5) adopt the space group P2(1)/m with a = 13.537(2) A, b = 4.1431(6) A, c = 21.545(3) A, beta = 91.297(3) degrees, R1 = 4.9%, wR2 = 11.0% for (III) and a = 13.603(3) A, b = 4.1502(8) A, c = 21.639(4) A, beta = 91.435(3) degrees, R1 = 6.1%, wR2 = 13.4% for (V). alpha-RbBi(3)Se(5) is also three-dimensional, whereas beta-RbBi(3)Se(5) and CsBi(3)Se(5) have stepped layers with alkali metal ions found disordered in several trigonal prismatic sites between the layers. In gamma-RbBi(3)Se(5) and RbBi(3)Se(4)Te, the layers consist of Bi(2)Te(3)-type fragments, which are connected in a stepwise manner. In the mixed Se/Te analogue, the Te occupies the chalcogen sites that are on the "surface" of the layers. All compounds are narrow band-gap semiconductors with optical band gaps ranging 0.4-1.0 eV. The thermal stability of all phases was studied, and it was determined that gamma-RbBi(3)Se(5) is more stable than the and alpha- and beta-forms. Electronic band calculations at the density functional theory (DFT) level performed on alpha-, beta-, and gamma-RbBi(3)Se(5) support the presence of indirect band gaps and were used to assess their relative thermodynamic stability.  相似文献   

14.
Yun H  Ryu G  Lee S  Hoffmann R 《Inorganic chemistry》2003,42(7):2253-2260
The new low-dimensional ternary chalcogenide, Nb(1+x)V(1-x)S(5) (x = 0.18), has been prepared and characterized. This compound crystallizes in the monoclinic space group, C2(2h)-P2(1)/m with two formula units in a cell with dimensions a = 9.881(4) A, b = 3.329(1) A, c = 8.775(3) A, and beta = 114.82(3) degrees. The layer is composed of two unique chains of face-sharing Nb-centered bicapped trigonal prisms and edge-sharing M-centered octahedra (M = Nb or V). The electronic structures of the monomeric basic building units, NbS(8) and VS(6), and hypothetical and real one-, two-, and three-dimensional structures making up the compound are examined to understand the nature of inter- and intrachain interactions and orbital overlapping among metals and sulfur atoms. The electronic structure of Nb(1+x)V(1-x)S(5) is essentially given by superimposing those of the individual chains. V d orbitals are found to be crucial for the one-dimensional metallic conductivity along the chain axis.  相似文献   

15.
Chen X  Dilks KJ  Huang X  Li J 《Inorganic chemistry》2003,42(12):3723-3727
Two novel metal polyselenides, KPdCu(Se(2))(Se(3)) (I) and RbPdCu(Se(2))(Se(3)) (II), have been synthesized from solvothermal reactions in superheated ethylenediamine at 160 degrees C. The isostructural compounds crystallize in the monoclinic space group P2(1)/m, Z = 2, with a = 6.145(1) A, b = 7.268(1) A, c = 8.865(2) A, beta = 102.41(3) degrees for I, and a = 6.253(1) A, b = 7.267(1) A, c = 8.993(2) A, beta = 102.28(3) degrees for II. Their crystal structures are two-dimensional networks with [PdCu(Se(2))(Se(3))](-) anionic layers built from one-dimensional [Pd(Se(2))(Se(3))](2)(-) "chains" that are "stitched" together by tetrahedrally coordinated Cu atoms. The DSC data show that I and II are stable up to 400 degrees C and decompose at ca. 436 and 424 degrees C, respectively. Both compounds are narrow band-gap semiconductors with estimated band gaps of about 0.7 eV (I) and 0.8 eV (II), respectively. They are the first structurally characterized quaternary copper palladium polychalcogenides with a (Se(2))(2)(-) and a (Se(3))(2)(-) fragment, both exhibiting interesting and unusual metal-selenium coordination.  相似文献   

16.
Mononuclear transition metal complexes of the type [M(2,6-NITpy)2](ClO4)2 x solvent (2,6-NITpy = 2,6-bis-(3'-oxide-1'-oxyl-4',4',5',5'-tetramethylimidazolin-2'-yl)pyridine; M = Ni (1), Co (2), Zn (3), Mn (4), Cu (5)) have been synthesized and characterized by single-crystal X-ray diffraction studies. Crystal data: 1, monoclinic, P2(1)/c, Z = 4, a = 20.946(2) A, b = 12.0633(2) A, c = 21.173(2) A, beta = 113.55(1) degrees; 2, monoclinic, P2(1)/c, Z = 4, a = 20.902(2) A, b = 12.0981(8) A, c = 21.215(2) A, beta = 113.130(9) degrees; 3, triclinic, P1, Z = 2, a = 11.410(1) A, b = 12.932(1) A, c = 21.609(2) A, alpha = 96.040(2) degrees, beta = 102.24(1) degrees, gamma = 114.98(1); 4, monoclinic, P2(1)/n, Z = 4, a = 11.5473(8) A, b = 19.212(1) A, c = 25.236(2) A, beta = 98.772(9) degrees; 5, triclinic, P1, Z = 2, a = 12.1604(9) A, b = 12.6961(9) A, c = 18.103(2) A, alpha = 84.191(8) degrees, beta = 73.392(8) degrees, gamma = 66.072(8). The two 2,6-NITpy biradicals behave as terdentate ligands and bind almost perpendicular to each other in meridional positions. In compounds 1-4, the pyridine rings are axially ligated and four different nitronyl nitroxide radicals bind to the metal center through their O(nitroxyl) atoms, forming the equatorial plane of a distorted octahedron. On the contrary, in the copper(II) complex (5), the two N(pyridyl) atoms are found in equatorial positions. Only two nitroxide groups are then bound to the copper(II) ion in the equatorial plane, the other two being axially ligated. The two axially bound nitronyl nitroxide radicals couple ferromagnetically to the copper center (JCu-rad(ax) = + 10 K), whereas a strong antiferromagnetic coupling between this metal ion and the equatorial nitroxide groups (JCu-rad(eq) = -460 K) is observed. The other complexes exhibit strong antiferromagnetic metal-radical interactions: JNi-rad = -240 K, for 1; JMn-rad = -120 K, for 4. Interestingly, the study of the diamagnetic zinc(II) compound (3) reveals a moderate intramolecular antiferromagnetic interaction between radicals coordinated to the same metal center (Jrad-rad = -27.7 K). This interaction is transmitted through space and is also present in the other complexes: Jrad-rad = -14 K, for 1; Jrad-rad = -10 K, for 4; Jrad-rad = -20.5 K, for 5. Antiferromagnetic intermolecular interactions are also present in all the complexes herein studied.  相似文献   

17.
The closely related phases alpha- and beta-A(2)Hg(3)M(2)S(8) (A = K, Rb; M = Ge, Sn) have been discovered using the alkali polychalcogenide flux method and are described in detail. They present new structure types with a polar noncentrosymmetric crystallographic motif and strong nonlinear second-harmonic generation (SHG) properties. The alpha-allotropic form crystallizes in the orthorhombic space group Aba2 with a = 19.082(2) A, b = 9.551(1) A, c = 8.2871(8) A for the K(2)Hg(3)Ge(2)S(8) analogue, and a = 19.563(2) A, b = 9.853(1) A, c = 8.467(1) A for the K(2)Hg(3)Sn(2)S(8) analogue. The beta-form crystallizes in the monoclinic space group C2 with a = 9.5948(7) A, b = 8.3608(6) A, c = 9.6638(7) A, beta = 94.637 degrees for the K(2)Hg(3)Ge(2)S(8) analogue. The thermal stability and optical and spectroscopic properties of these compounds are reported along with detailed solubility and crystal growth studies of the alpha-Kappa(2)Hg(3)Ge(2)S(8) in K(2)S(8) flux. These materials are wide gap semiconductors with band gaps at approximately 2.40 and approximately 2.64 eV for the Sn and Ge analogues, respectively. Below the band gap the materials exhibit a very wide transmission range to electromagnetic radiation up to approximately 14 microm. alpha-K(2)Hg(3)Ge(2)S(8) shows anisotropic thermal expansion coefficients. SHG measurements, performed with a direct phase-matched method, showed very high nonlinear coefficient d(eff) for beta-K(2)Hg(3)Ge(2)S(8) approaching 20 pm/V. Crystals of K(2)Hg(3)Ge(2)S(8) are robust to air exposure and have a high laser-damage threshold.  相似文献   

18.
Reactions of N-methyliminobis(methylenephosphonic acid), CH(3)N(CH(2)PO(3)H(2))(2) (H(4)L), with divalent metal acetates under different conditions result in metal diphosphonates with different structures. Mn(H(3)L)(2).2H(2)O (complex 1) with a layer structure was prepared by a layering technique. It is triclinic, P1 macro with a = 9.224(3) A, b = 9.780(3) A, c = 10.554(3) A, alpha = 82.009(6) degrees, beta = 74.356(6) degrees, gamma = 89.853(6) degrees, Z = 2. The Mn(II) ion is octahedrally coordinated by six phosphonate oxygen atoms from four ligands, two of them in a bidentate and two in a unidentate fashion. Each MnO(6) octahedron is further linked to four neighboring MnO(6) octahedra through four bridging phosphonate groups, resulting in a two-dimensional metal phosphonate (002) layer. These layers are held together by strong hydrogen bonds between uncoordinated phosphonate oxygen atoms. The zinc complex Zn(3)(HL)(2) (complex 2) was synthesized by hydrothermal reactions (4 days, 438 K, autogenous pressure). It is monoclinic, P2(1)/n with a = 7.7788(9) A, b = 17.025(2) A, c = 13.041(2) A, beta = 94.597(2) degrees, Z = 4. The structure of complex 2 features a 3D network built from ZnO(4) tetrahedra linked together by bridging phosphonate groups. Each zinc cation is tetrahedrally coordinated by four phosphonate oxygen atoms from four ligands, each of which connects with six zinc atoms, resulting in voids of various sizes. Magnetic measurements for the manganese complex shows an antiferromagnetic interaction at low temperature. The effect of the extent of deprotonation of phosphonic acids on the type of complex formed is discussed.  相似文献   

19.
Two noncentrosymmetric quaternary tin chalcoarsenates, Cs(2)SnAs(2)S(9) (1) and Cs(2)SnAs(2)Se(9) (2), were synthesized by the polychalcoarsenate flux method. Compound 1 crystallizes in the orthorhombic space group Pmc2(1) with a = 7.386(3) A, b = 14.614(5) A, c = 14.417(5) A, and Z = 4. Compound 2 crystallizes in the monoclinic space group P2(1) with a = 7.715(5) A, b = 17.56(1) A, c = 7.663(5) A, beta = 115.86(1) degrees, and Z = 2. Both structures contain the same tin-centered molecular cluster anions [Sn[AsQ(2)(Q(2))][AsQ(Q(2))(2)]](2)(-) (Q = S, Se) separated by Cs cations. The Sn(4+) ion is in a distorted octahedral environment coordinated by two different pyramidal-shaped tridentate ligands, [AsQ(2)(Q(2))](3)(-) and [AsQ(Q(2))(2)](3)(-). These compounds absorb visible light at energies above 1.98 and 1.45 eV for 1 and 2, respectively. Differential thermal analysis revealed that 1 melts at 350 degrees C and on cooling gives a glass. The glass recrystallizes at 268 degrees C upon subsequent heating. Compound 2 melts at 258 degrees C.  相似文献   

20.
The coordination chemistry of the sterically hindered macrocyclic triamines, 1,4,7-R3-1,4,7-triazacyclononane (R = i-Pr, i-Pr3tacn, and R = i-Bu, i-Bu3tacn) with divalent transition metals has been investigated. These ligands form a series of stable novel complexes with the triflate salts MII(CF3SO3)2 (M = Fe, Co, or Zn) under anaerobic conditions. The complexes Fe(i-Pr3tacn)(CF3SO3)2 (2), [Co(i-Pr3tacn)(SO3CF3)(H2O)](CF3SO3) (3), [Co(i-Pr3tacn)(CH3CN)2](BPh4)2 (4), Zn(i-Pr3tacn)(CF3SO3)2 (5), [Fe(i-Bu3tacn)(CH3CN)2(CF3SO3)](CF3SO3) (6), Fe(i-Bu3tacn)-(H2O)(CF3SO3)2 (7), and Co(i-Bu3tacn)(CF3SO3)2 (8) have been isolated. The behavior of these paramagnetic complexes in solution is explored by their 1H NMR spectra. The solid-state structures of four complexes have been determined by X-ray single-crystal crystallography. Crystallographic parameters are as follows. 2: C17H33F6FeN3O6S2, monoclinic, P2(1)/n, a = 10.895(1) A, b = 14.669(1) A, c = 16.617(1) A, beta = 101.37(1) degrees, Z = 4. 3: C17H35CoF6N3O7S2, monoclinic, P2(1)/c, a = 8.669(2) A, b = 25.538(3) A, c = 12.4349(12) A, beta = 103.132(13) degrees, Z = 4. 6: C24H45F6FeN5O6S2, monoclinic, P2(1)/c, a = 12.953(6) A, b = 16.780(6) A, c = 15.790(5) A, beta = 96.32(2) degrees, Z = 4. 7: C20H41F6FeN3O7S2, monoclinic, C2/c, a = 22.990(2) A, b = 15.768(2) A, c = 17.564(2) A, beta = 107.65(1) degrees, Z = 8. The ligand i-Pr3tacn leads to complexes in which the metal ions are five-coordinate, while it's isobutyl homologue affords six-coordinate complexes. This difference in the stereochemistries around the metal center is attributed to steric interactions involving the bulky alkyl appendages of the macrocycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号